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ABSTRACT

A study of transient discharge of liquids from containers through
orifices and tubes is described. The investigation was conducted with
special attention being devoted to the development of proper scaling
procedures and similarity relationships. The instantaneous dimensionless
mass flow rate was obtained as a function of six other dimensionless
parameters,

Analyses based on one-dimensional flow models yielded functional
relationships for the dependence of the dimensionless mass flow rate (or
alternately the dimensionless liquid height in the container) on the
other pertinent parameters obtained from dimensional analysis. Both dis-
charge through an orifice and through a tube were considered. Analyses
based on the assumption of quasi-steady flow, and neglecting inertia
effects, yielded simple mathematical solutions which were readily evalu-
ated. However, these solutions become inaccurate as the ratio of the
container cross-sectional area to the discharge area is decreased. Im-
proved analyses, which properly account for inertia effects, yielded
second order non-linear differential equations describing the dynamics
of the process. Numerical solutions of these equations were obtained
with a Fourth-Order Runge-Kutta method by means of digital computation,

A closed form solution was also obtained for the case of transient
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discharge through an orifice with a constant discharge coefficient. In
reality, the discharge coefficient for discharge through an orifice and
the friction factor for discharge through a tube both vary during a trans-
ient discharge process due to continuous changes in Reynolds number.
However, it was found that when the Reynolds number is of the order of 1000
or larger, predictions of acceptable engineering accuracy can be easily
obtained by assuming the discharge coefficient or friction factor, re-
spectively, to be constant throughout the entire process. For the case

of discharge through a tube, a closed form solution in terms of elemen-
tary functions was obtained for the situation in which the external pres-
sure drop is much greater than the initial hydrostatic head in the con-
tainer, Limits of validity for the various analyses were determined.

Finally, experiments were conducted in ranges where the inertia
effects were significant using two different entrance geometries for the
discharge tube entrance (rounded and sharp-edged entrance). A closed
circuit Stop-Action TV system was used for recording and read-out of
experimental data. The resulting measurements were evaluated in terms
of the similarity parameters obtained from dimensional analysis, and were
also compared with the analytical predictions.

These evaluations and comparisons establish the validity of the
scaling procedures developed and substantiate the ranges of accuracy for
the various simplified analytical models. The techniques used and the
resulting similarity relationships obtained can be applied to liquid fuel
rocket techndlogy and in other areas where rapid discharge of liquids is

encountered.
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CHAPTER 1

INTRODUCTION

The advent of the space age has accentuated the need for larger and
more powerful rockets. As the thrust developed by a liquid propellant
rocket is increased, the supply mass flow rates of the fuel (e.g. LH2 or
RP1) and oxidizer (e.g. LOX) have to be increased. Since full scale
testing of such large liquid fuel and oxidizer supply systems is expensive
and time consuming, it is desirable to ascertain the performance of a
large system in advance of its construction. In order to evaluate the
soundness of a particular design, it is appropriate to test scaled down
iaboratory models. It is most desirable to express the results in terms
of appropriate dimensionless parameters so that they are independent of
the size of the system considered as well as the particular fluid tested.
The present investigation was undertaken to examine the possibility of
scale model testing (from a fluid dynamic viewpoint) of such systems.

In order to duplicate the behavior of a large system with a cor-
responding smaller laboratory model, it is required that complete simi-
larity be achieved, This can sometimes be accomplished if fairly simple
processes are involved. However, the task of attaining complete simi-
larity becomes increasingly difficult for complex systems (see Figure
1.1) in which a number of physical phenomena all occur simultaneously
and interact with each other. In the case of liquid propellant systems,

heat is sometimes transferred which can stratify the liquid and cause
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evaporation at the gas-liquid interface. This evaporation, in turn, can
effect the ullage pressure (pressure above the liquid surface) in the
container. If the pressure in the supply line falls below the saturation
vapor pressure, cavitation can occur resulting in two-phase flow. It is
very difficult to simulate all these effects, simultaneously, in the
testing of a scale model, Thus for complex situations, where exact simu-
lation may not be attainable, it is frequently desirable that thé phenom-
ena be separated and studied individually. This not only allows an inten-
sive study of a particular aspect but also facilitates a systematic pro-
cedure for obtaining large numbers of experimental measurements rapidly
and easily. Here it is important to ascertain the limitations of the
laboratory simulation and to formulate a laboratory program which minimizes
these limitations as much as possible, It should be emphasized that
laboratory scale model testing, however exhaustive it may be, is only a
precursor to the testing of a prototype. Full scale testing can bring

out certain unexpected features of operational behavior. If it does,

then further study may be required to establish confidence in the existing
system or to determine the necessary changes which will eliminate any of
these features which are found undesirable.

This investigation was conducted with a view toward the various
practical aspects of liquid propellant supply systems as described above.
In order to facilitate the analytical and experimental portions of the
research, and simultaneously focus attention on the important physical
effects involved, a simplified configuration (Figure 1.2) was chosen for
detailed study., Further, only single-phase constant density flow was
treated with heat transfer and cavitation phenomena being omitted from

consideration, The work reported here comprised an engineering study of
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transient flow during discharge of a liquid which is initially at rest
in a container. The problem is of interest not only in rocketry, but
also in many other areas of technology. One example is associated with
the rapid transfer of liquids in automated food processing operations
having very high production rates. Other examples have to do with liquid
transfer in large water supply'systems? punping of petroleum from tankers
and rapid movement of water in the case of fire fighting equipment. In
most of these situations the pressure above the liquid surface in the
supply container is increased in order to increase the mass flow rate.
Structural and weight considerations set practical limits on the range of
available ullage pressures in the container, however. Another method of
increasing the mass flow rate is to increase the cross-sectional area of
the discharge stream in relation to that of the container. It is known
that a decrease in the ratio of container cross-sectional area to dis-
charge area does not increase the mass flow rate proportionately. Below
some value of this ratio local inertia effects play an important part in
the transient discharge process and the results obtained from analyses
based on quasi-steady flow tend to be erroneous. For this reason con-
siderable attention was directed toward such transient flows in the pres-
ent investigation, and toward establishing limits of validity for the
various types of analyses.

It is clear that the modeling procedures outlined previously (Figure
1.1} can be carried out effectively in general only if the dimensionless
similarity parameters have been obtained and if the relationships be-
tween them have been roughly established, perhaps by means of approximate
analytical techniques or from previously obtained experimental measurements.

The second point is very important if exact similarity cannot be achieved.



In this case attempts should be made to maintain similarity with respect

to the parameters which are dominant, and should be sacrificed only with

respect to those parameters which are known to have a minor effect within

the range of operation considered. In order to effect some progress to-

ward these broad and general objectives, the procedure outlined below was

followed in treating the system shown in Figure 1.2,

(a)

(b)

(c)

(d)

The dimensionless similarity parameters were obtained by means
of dimensional analysis.

The physical effects pertaining to the problem of gravity and
pressure driven discharge of liquids were studied.

Analytical results, based on approximate physical models, were
derived and solutions were expressed in terms of the similarity
parameters obtained. Since the bulk average mass flow rate is
of primary interest, the analytical models were based on one-
dimensional flow because they were the simplest from a mathe-
matical viewpoint and because experiments showed that they
yield results of acceptable engineering accuracy. A consider-
ation of transient discharge through an orifice provided the
range in which the inertial effects in the container become
predominant. Thus both discharge through an orifice and through
a tube were considered.

Finally, experimental measurements were made in order to verify
the significance and importance of the similarity parameters
obtained, and to establish the validity and limitations as-
sociated with the approximate analytical solutiens. Since the
results should be independent of the working liquid when ex-

pressed in dimensionless form, water was used in experiments



since it was inexpensive, readily available, and safe and easy
to handle,
The details of each of the sbove sub-studies are contained in the chapters
that follow,

The results of the investigation are expected to be useful for:

1. obtaining a better understanding of the dimensionless similarity
parameters associated with some of the fluid dynamics phenomena
occurring in single-phase liquid discharge systems;

2, providing relationships for the dependence of mass flow rate
on various other parameters, at least approximately;

3. developing experimental techniques for laboratory scale model
testing;

4, and suggesting improved techniques that may facilitate future
similarity investigations in related fields,

Before proceeding with the presentation of details of this study a

brief Survey of Literature, related to this research, is given in the

following Chapter.



CHAPTER 2

SURVEY OF LITERATURE

The performance of a liquid fuel rocket depends, among other things,
on the rate of supply of fuel and oxidizer to the rocket engine. Scaling
of rocket engines has been discussed by Penner (Ref. 1), who indicated
that scaling of chemical reactors with complete similarity is not possible,
For liquid fuel rocket engines, scaling with loss of geometric and dynamic
similarity was considered. For small scale units, Penner's analysis sug-
gests a reasonable approach to the interpretation of experimental data.

It was conciuded that once the relationship between the various parameters
has been established from a large number of experiments, rational scaling
to larger units should be possible. The present investigation is mainly
limited to a consideration of the supply rates of fuel or oxidizer to

the engine.

The discharge of containers through orifices and pipes has been
studied for many years by hydraulic engineers (Ref, 2), whose main aim
was the design of water supply systems. Pure gravity discharge is encoun-
tered in suchvdesigns and Bernoulli's Equation, with empirical corrections
for the viscous and geometric effects, yields reasonably accurate results
for the times and rates of discharge (Ref. 3, 4). Many of the modeling
techniques developed by hydraulic engineers were concerned with river
dams, spillways, open channel flows, etc., and little attention has been

paid to the problem of rapid discharge of containers (Ref. 5).



One of the most powerful methods for dealing with such problems is
dimensional analysis. This technique yields the similarity parameters
involved, through an application of Buckingham's w-Theorem (Ref, 6), in
that it groups the pertinent variables into appropriate dimensionless
parameters. Sometimes it may appear (from dimensional analysis alone)
that conflicting requirements must be satisfied for scaling from which it
may be prematurely concluded that no scaling is possible at all. For ex-
ample, in ship motion (Ref. 7), for geometrically similar hull shapes the
dimensionless drag cogfficient (CD) is a function of fineness coefficient

pVL

{¢), Froude number (%I) and Reynolds number Gmi-a. This implies that for

CD to be same for two geometrically similar hull shapes, ¢, Froude number
2
and Reynolds number must be the same. To keep !—-constant, the velocity

gl
must decrease with a decrease in model size, whereas to keep 2%& the same
V must increase with decreasing model size, if the same fluid is used.
However, the practical possibility of scaling tests for ship hulls stems
from the fact that the drag can be separated into two parts, one depending
on the Reynolds number and the other on the fineness coefficient and the
Froude number. Thus, even though complete similarity is not achieved in
its entirety, it is possible in this case to break the problem into two
parts and to maintain similarity in each of these two parts.

There is another problem. Sometimes it is very difficult to match
one of the non-dimensional parameters. A case in point invelves the
Reynolds number in wind tunnel testing of aircraft models (Ref. 8, 9).

In such instances, the models are tested at a Reynolds nuﬁber which is
different from the full scale one, and the results are extrapolated using

some known behavior. Thus it can be seen, that though dimensional an-

alysis gives the dimensionless parameters involved, it does not give the
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form of dependence among these parameters. Neither can it predict which
of the parameters are significant and which of them can be neglected.
Hence, dimensional analysis should be supplemented by experiment, experi-
ence, and mathematical analysis wherever possible, to make scale model
testing feasible and meaningful.

Flanigan and Putnam (Ref. 10) discuss the principles of similitude
in fluid flow and classify modeling programs into four general categories
as

(a) diagnostic

(b) predictive

(¢) developmental

(d) basic
As was suggested in their paper, the application of modeling to practical
problems usually involves more than one category. The problem of scaling
and testing distorted models for valid scale model work was discussed by
Ezra (Ref. 11). Various methods for distinguishing the independent and
dependent similarity parameters and finding the relationships between
them were suggested. Methods for scale model work, even when one or more
independent parameters cannot be scaled and when there is no knowledge of
mathematical relationships between the independent and dependent variables,
were given by Ezra. In short, the problem treated in this report involves
a twofold attempt to:

(1) match the relevant non-dimensional parameters for scaled
down and full scale rocket propellant containers so that
the non-dimensional mass flow coefficient remains the same,

and

(i1) determine its variation with each of the other dimensionless
parameters.
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The problem at hand is that of modeling the discharge of a liquid.
In tﬁe most general terms, two-phase flow of a stratified liquid, with
cavitation and heat transfer, through multiple outlets from a single tank
can occur. In addition, the effective gravitational field may vary in
general, The processes involved are very complicated, with numerous
effects to be taken into account. For instance, the investigations of
Roudebush and Mandell (Ref. 12) and Nein and Thompson (Ref. 13) clearly
indicate the complicated nature of an apparently simple problem of pres-
surizing a tank containing a cryogenic liquid. Clark (Ref. 14) has re-
viewed the literature regarding the various problems (pressurization,
stratification, and interfacial phenomena} involved with large rocket
propellant tank systems. Fischer (Ref, 15) presented the conditions for
similarity for two-phase flows with simultaneous heat transfer. lie con-
cludes that for two two-phase flows to be similar not only the character-
istic Reynolds, Euler and Froude numbers for the individual phases must
be the same in the two flows, but also the density and the dynamic vis-
cosity ratios for the two phases in both flows must be the same.

Many problems connected with single phase discharge through orifices
and flow through tubes have been studied. For instance, Rouse and Abul-
Fetouh (Ref. 16) have calculated pressure distributions for irrotational
flow through circular orifices. Saad and Oliver (Ref. 17} and Lubin and
Springer (Ref, 18) carried out theoretical and experimental investigations
for discharge of a container through an orifice, The flow in the entrance
region ('calming length') of a tube was studied theofetically by Schiller
for laminar flow (Ref. 19) and by Latzko for turbulent flow (Ref. 20).
Nikuradse and Kirsten have given experimental results for these problems

(reported in Ref. 21). Szymansky (Ref., 22) studied the flow establishment
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in an infinitely long pipe subjected to a sudden pressure gradient. The

results éf these investigations (References 16 through 22) are discussed

in some detail in Chapter 4, where the one-dimensionality of flow through
orifices and tubes is examined.

Recent textbooks on fluid mechanics (Refs. 4 and 23), however, have
discussed the problem of unsteady discharge of a container through an
orifice. There the unsteady flow equation is simplified for final in-
tegration (to obtain the total efflux time), with the assumption that
the discharge area is small in comparison with the container area, there-
by excluding the effects of local acceleration. Bird, Stewart and Light-
foot (Ref. 24) give the correction for the total efflux time, necessary
in case of constant cross-section vertical tanks with large discharge
openings (in comparison with that of the tank) in the form of a definite
integral. Winter and Schoenhals (Ref. 25 and 26) have reported a numerical
solution of the unsteady energy equation, for the case of discharge through
an orifice. Sestak, Jezek and Jirsak (Ref. 27) at about the time this
work was being completed gave an analytical solution to the same problem.
These are discussed in later sections of the report.

In summary, it can be said that although there have been numerous
investigations with regard to individual phenomena, further attention is
needed with respect to the modeling of rapid discharge of a liquid from
a container, taking inertia effects into account. This is the aim of
the present investigation the results of which are reported in the fol-

lowing chapters of this report.
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CHAPTER 3

DIMENSIONAL ANALYSIS

In this chapter dimensional analysis results are given along with
a discussion of the relative importance of various dimensionless param-
eters in different situations. The details of the method of obtaining
the dimensionless parameters are presented in Appendix A.

The system illustrated in Figure 1.2 is considered. For this system,
both the discharge rate, m, and the instantaneous liquid height, y, will
be discussed. In the experimental portion of the investigation it was
found that the height of the liquid could be measured more conveniently
than the mass flow rate. It can be noted that (- %%) corresponds to the
velocity of liquid in the container and thus the mass flow rate is given
by pA(- %%9, where A is the cross-sectional area of the container.

The instantaneous liquid height, y, and the mass flow rate, m, during
the transient discharge process should in general be dependent on the

variagbles listed below:

SYMBOL VARIABLE DIMENSIONS

t time elapsed from T
initiation of discharge

Physical Dimensions of the System

D container diameter L
d diameter of discharge tube L

L discharge tube length L
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H initial height of the L
liquid in container

Imposed Forces

AP external pressure drop, ML 112
(Pl - Pz)

g effective gravitational T2
acceleration

Fluid Properties

p density of liquid ML

v kinematic viscosity of liquid L2r-1

The instantaneous liquid height, y, and the instantaneous mass flow

rate, h, are given by

y =y (t, D, d, L, H, AP, g, p, V) (3.1a)

m=m(, D, d, L, H, AP, g, p, v) (3.1b)

Use of Buckingham's n-Theorem (Ref. 6) and the repeated variable
technique (Ref. 28) results in the following dimensionless parameters

(See Appendix A)lz

fr  dimensionless liquid height

.

dimensionless mass flow rate

ﬂD? 1
p (=) E'ngH

1The numerical constants in the various ratios and the geometric param-

eter B, defined by B2 = (A/a)2 - 1 and appearing in the dimensionless
time and dimensionless mass flow rate, were introduced only for con-
venience in interpretation.
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t dimensionless time
s [E
8
% ratio of diamecters
%- discharge tube length to diameter
ratio
%- ratio of tube length to initial
liquid height in container
égé£5~ ratio of pressure head to initial
liquid head in container
d i # characteristic Reynolds number for

flow through discharge tube.

Use of these parameters makes it possible to relate the dimension-

less liquid height and the dimensionless mass flow rate respectively by

P Y2¢i L D
%aF( t ’A{_log:dvg"":ﬁ» p%r) (3-23)
o [H
g
; Y2gHi L D
m fPlog | O7ZgH L 3.4 (3.2b)

t
= G
2 -2 H Oy
#D", 1 2H
o O g /AR 8T

Equations (3.2a) and (3.2b) indicate that, for a system of arbitrary

geometry, the dimensionless liquid height and the dimensionless mass flow
rate are in general dependent on six dimensionless parameters. The exact
nature or form of dependence cannot be assessed from dimensional analysis

alone,
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For a set of geometrically similar systems, only a single character-
istic dimension is required to specify the size of a particular system,
If geometric similarity is maintained, the ratios~%, and %-are constants
and they cease to be variable parameters. Hence, if any one of the three
lengths D, d, or L is fixed, the other two are automatically determined.

Thus, for geometrically similar systems equations (3.2a) and (3.2b) reduce

to
for—t, SR, SO (3.32)
O
g
ﬁfi‘ = G( L ﬁ’é“%e'&og‘%ﬁoa’) (3.3b)
o ) 5 VIR 8 ‘/%

Additionally, if the liquid geometry in the container is the same at the
start of the discharge process, the ratio %-also is a constant. Thus,
for all systems having similar initial geometry for both the container

and the liquid, equations (3.3a) and (3.3b) further simplify to

Lo p—ie, ek S8 (3.4a)
2H
Ny

L . Gt , /g 4/ZH, C£.4b)
D=, 1

p (lr) 7 Ve B ’w—’
g

It should be noted that the results given in equations (3.3a), (3.3b),
(3.4a) and (3.4b) are quite general. They would apply even for the com-

plicated configuration shown in Figure 1.1, if similarity is maintained
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with respect to the baffle geometry and valve setting, so long as the
flow is single-phase and heat transfer and surface tension effects are
not important.

As mentioned previously, this is all the information that can be
obtained from dimensional analysis. The proper forms for the functions
F and G have to be obtained by considering the physics and mathematics
of the problem. It is the endeavour of the next few chapters to consider
these and establish the relationship between the dimensionless liquid
height (alternately the dimensionless mass flow rate) and the dimension-
less time, and to investigate its dependence on the various other param-

eters indicated above.



18

CHAPTER 4

PHYSICAL DESCRIPTION OF TRANSIENT LIQUID DISCHARGE

The physical effects pertaining to the problem of gravity and pres-
sure driven discharge of liquids from containers are described in this
chapter to facilitate an overall understanding of the process. Figure
1.2 illustrates the system studied., Forces act on the liquid to produce
acceleration during the discharge process. The various kinds of forces,
and the corresponding two types of acceleration that result from the

action of these forces, are indicated in the following table,

Table 4.1: Physical Effects

Forces Acceleration

Boundary Forces

Convective Acceleration

L4

Gravity Forces
Produce

Forces due to External
Pressure Drop Local Acceleration

Viscous Forces

The boundary forces (forces perpendicular to the walls) are suf-
ficient to prevent the liquid from moving normal to the boundaries, the
structure being considered rigid. The downward gra&ity force and the
external pressure drop (from top to the bottom of the fluid column) con-

tribute to downward acceleration of the liquid, while viscous forces
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impede this acceleration. Convective acceleration is associated with
the change in velocity of a fluid particle as it travels from a region
of one velocity into a region having a different velocity. Thus, con-
vective acceleration can be produced even if the flow is steady. Local
acceleration of the fluid is associated with the time varying, or tran-
sient, condition of the flow. This acceleration component, at any point
in the system, is equal to the time rate of change of velocity at that
point, The two acceleration contributions, when added together at a
particular point in the system, give the actual acceleration of the fluid
particle passing through that point at a specific instant of time. In
each of the analyses which are presented in later sections of the report
the physical effects accounted for are indicated, and errors produced by
omitting certain physicai effects are evaluated.

In the analytical treatment of the problem the flow was assumed to
be one-dimensional. This assumption can be justified on the basis of
theoretical and experimental results obtained by previous investigators.
Rouse and Abul-Fetouh (Ref. 16) conclude that for steady irrotational
flow through an axially symmetric orifice, changes in velocity and pres-
sure due to convective acceleration are confined to a region of about 1
diameter (of the orifice) upstream and downstream of the orifice in the
limiting case of very small values of %; This region of influence de-
creases with increasing values of gn Further, the pressure distribution
across the cross-sectionof the orifice itself is nearly uniform. Saad
and Oliver (Ref. 17) found that draining of a tank through an orifice
produces oscillations of the free surface. Experimentally, they observed
that drainage generated a damped oscillation when L 0.125, When

D
g > 0.25 the oscillatory amplitude was too small to be experimentally
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detected even with high speed photography, which was in conformity with
their theory. Experimental results of Lubin and Springer (Ref. 18) in-
dicate that a dip in the surface does not begin to form until é-% 0.5,
These results indicate that the flow in the container is one-dimensional
except for a limited region near the orifice and it remains so until the
liquid height in the container is of the order of the diameter of the
orifice, The two dimensional aspects of the flow were not investigated
in the present study.

If the junction between the container and the discharge tube at~
tached to it is smoothly rounded, the velocity at the entrance to the
tube is nearly uniform (Ref. 4). The flow development in the entrance
region of a tube, when the velocity at the entrance itself is uniform,
has been investigated by many researchers. For steady laminar flow
Schiller (Ref. 19) appraxim%ted the actual velocity variation with an
assumed slug flow, constant velocity profile near the center of the pipe
and with two tangent portions of a parabola near the wall. The analyti~
cal results predicted the entrance length to be 57.5d at a Reynolds num-
ber of 2000. This is the point where the two parabolas coalesce and the
central core of uniform flow vanishes. Nikuradse's experiments (Ref. 21)
indicate a smaller entrance length of 20d. But at about 10d from the
entrance the ratio of local velocity (at any radial location) to the mean
velocity varies from 1.45 at the center of the pipe to 1.0 at a distance
of 0.1d from the wall (see Figure 13 in Ref. 21), For turbulent flow
Latzko (Ref, 20) obtained the entrance length to be 10d at a Reynolds
number of 104, However, this length is too short according to the ex-
periments by Kirsten (Ref. 21) and by Nikuradse (Ref., 21) who found the
entrance length to be greater than 50d and 25d respectively. The entrance

length appears to be a very weak function of the Reynolds number for
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turbulent flow. The velocity profiles obtained by Nikuradse (see

Figure 25 in Ref. 21) indicate that at 12.5d from the entrance the ratio
of local to mean velocity varies only between 1.15 at the center of the
pipe and 0.9 at a distance of 0.05d from the wall. The preceeding re-
sults all apply only to a steady flow through the tube.

Szymanski (Ref, 22) studied the unsteady situation, i.e. flow
establishment in an infinitely long pipe subjected to a sudden pressure
gradient at time t = 0, The laminar flow profile does not achieve its
fully developed parabolic shape until a time t % 0,125 dzlv . In terms
of the dimensionless parameters obtained in Chapter 3 this yields t* =
2.5 when B = 10, %-c 5, é‘* 1 and gﬁ%ﬁﬁf, 2000. In the laminar flow re-
gime the ratio of instantaneous local velocity to the final steady state
center line velocity varies from 0 to 0.2 at t* = 0.25 (for values of
the other parameters given above), the veloecity profile being flat over
most of the tube during the transient acceleration period. If the same
analysis were assumed to hold for larger Reynolds numbers t* would be

dv2gH _ .S
v

about 10 when 10°. This would not be expected to be accurate for
turbulent flow, but this result is cited here to indicate a probable
order of magnitude for the turbulent flow situation. These times are con-
siderably longer than the times required for complete discharge of a con-
tainer through a tube with the previously mentioned geometry (t* % 0.5).
Therefore, it can be seen that the assumption of one-dimensional flow is
reasoniable for transient discharge of a container through an orifice or
through a tube (when 1 < %-: 10 for the tube} for the purpose of calcu-
lating the flux and time rate of change of momentum and energy respec-

tively. However,when the entrance to the discharge tube is sharp-edged,

there is a f iow separation and reattachment in the entrance region.
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This destroys the one-dimensionality of the flow. Even so0, the analyses
may be taken to be valid by introducing a loss in head, as is done in
classical studies,

Reiterating, the problem studied is that of modeling single-phase
discharge of a liquid which is initially at rest in a container. The in-
stantaneous mass flow rate during the transient discharge process and its
dependence on the geometry of the system, pressure drop, effective gravi-
tational field and properties of the fluid are of primary interest. Par-
ticular attention is devoted to the inertial effects associated with in-
creasing the ratio of cross-sectional area of discharge to that of the
container,

In the following chapters various analyses are carried out which
vary in complexity, in the geometry associated with the system being
studied, and in the physical effects which are accounted for. The liquid
is considered to be incompressible for all of the cases studied. For
each situation the simplest possible analysis is carried out first and
the additional complexities are subsequently added so that the relative
magnitude of each physical effect can be illustrated for various operating

 ranges.
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CHAPTER 5

LIQUID DISCHARGE THROUGH AN ORIFICE

Quasi-Steady Flow in the Absence of

Viscous Effects for Zero Pressure Drop

Consider the system shown in Figure 5.1 which represents a special
case of that shown in Figure 1.2, that is, the case of %-z 0. For the
initial study of this system the pressure drop, (P1 - PZ)’ is omitted,
while viscous and local acceleration effects are neglected. This is the
simplest possible situation for discharge of a liquid from a container
and is presented here to illustrate how the dimensionless liquid height,
mass flow rate and time (given in Chapter 3) arise naturally. The physi-

cal effects accounted for are indicated below.

Table 5.1: Physical Effects

Forces Fluid Acceleration

Boundary Forces [] Local Acceleration
Gravity Forces

Forces due to External [x] Convective Acceleration
 Pressure Drop

Viscous Forces

0 ODEH

The analysis associated with the above conditions is based on a one-

dimensional model and assumes a quasi-steady type flow (since local
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acceleration is neglected). The details of the analysis are given in
Appendix B. The results, which yield the dimensionless liquid height and

dimensionless mass flow rate as functions of dimensionless time, are

e [ 'B-F] (5.1)

and

=5 m [ ] (5.2)
p (& 4 ) -« /2gH 8 V[TT

New variables t*, y* and m* are defined as

tro= =t
20
36
y* = %. (5.3)
N n 1 dy*
and S A -7 I
(=) g r2eH

These are substituted into equations (5.1) and (5,2) which then reduce

to simple forms. Thus,

y* = (1 - t%)? (5.4)
and

m* = (1 - t*) (5.5)
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It is now apparent as to why the initial w-factors obtained in
dimensional analysis were modified to include the numerical constants
and the factor 8. According to equations (3.4a) and (3.4b), for systems
which are similar with respect to geometry and initial liquid height,

y* and m* are unique functions of only t*, when viscous effects and ex-
ternal pressure drop are neglected. Equations (5.4) and (5.5) give the
functional relationships. These results are represented graphically in
Figures 5.2 and 5.3, which show that the dimensionless liquid height
decreases parabolically and the dimensionless mass flow rate linearly
with dimensionless time. The latter result is associated with the drop-
off in the hydrostatic head (which corresponds to the gravitational
driving potential) as liquid is removed from the container. Further,
the analysis gives the total discharge time for emptying a container
through an orifice at its bottom as 8 VE%Z.

It is interesting to note that when the instantaneous liquid height,
y, mass flow rate, m, and the time elapsed since initiation of the dis-
charge process, t, are non-dimensionalized as indicated in equations (5.3),

the graphs y* vs. t* and m* vs. t* become universal with respect to 2,

Transient Flow through an Orifice in the Absence of Viscous

Effects for Zero Pressure Drop

The process studied and described in this thesis involves the be-
havior of a liquid, initially at rest, when it is discharged from a con-
tainer. This implies that the initial flow rate (at t = 0) must be zero,
Although the actual flow rate may in reality rise very rapidly with time,
the inertia of the fluid prevents acceleration to the maximum flow rate

in zero time (as indicated in Figure 5.3). On this basis the model
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analyzed in the previous section is physically unacceptable, at least
for small values of time. During this initial time period local acceler-
ation effects, not considered in the previous analysis, are appreciable
when the fluid accelerates from rest. An analysis which considers these
aspects is given in this section. The physical effects accounted for

are indicated below.

Table 5.2: Physical Effects

Forces Fluid Acceleration

Boundary Forces Local Acceleration
Gravity Forces

Forces due to External [x] Convective Acceleration
Pressure Drop

O OB B

Viscous Forces

In the analysis considered here transient flow conditions are treated,
and local acceleration effects are accounted for. The system analyzed is
shown in Figure 5.1. For simplicity the flow is assumed to be one dimen-
sional. It is convenient in this case to apply conservation of energy to
a control volume surrounding the fluid remaining in the container at any
given instant of time. For this control volume conservation of energy

gives

Rate of work done

Rate of increase of Net rate on the fluid by
fluid energy in the | + | of energy | = | pressure forces at (5.6)
C.V. outflow boundaries where

fluid motion occurs.
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where both potential and kinetic energies must be accounted for. When
expressed in terms of symbols this relation becomes

2
v v
% [(aAy)g L+ (oAy) _%.] . [(pavz) -%-] - [PIAVI . pzav2] (5.7)

Since P, is chosen equal to P1 for this analysis and since AV, = av, from
continuity, the net rate of work done by the external pressure forces
(given by the right hand side of the above equation) is zero. Inserting
V1 8 - (%%) and V2 2 - (%- %%) makes it possible, after some manipulationm,

to rewrite equation (5.7} as

d2 B2(dt)2
= -g B masssto———— (508)
dt 2y

where 8% = [(2)2 - 1), Notice that if a = A, 8% = 0, and the physical
system reduces to the case of a fluid cylinder of constant area A, For
this situvation equation (5.8) gives the acceleration as d2 y/dt2 ® g,

In general §¥»= 0 at t = 0 (zero initial discharge flow rate), and
local acceleration effects dominate. Equation (5.8) shows that
a2 y/dt2 % (-g) for small values of time when %%-is negligibly small.
However, once g%~becomes sufficiently large the convective acceleration
effect, as indicated by the value of [Bz(dyidt)Z]/Zy in equation (5.8),
increases and the local acceleration effect, as indicated by d2 y/dtz,
decreases in magnitude.

For large values of B(a << A), the local acceleration effect diminishes
very rapidly when %%-is still quite small., Once the local acceleration
effect becomes negligible, equation (5,8) predicts g%'” - %-/7§§'in agree-

ment with the result given in equation (B.4) for quasi-steady flow,
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Equation (5.8) can be expressed in dimensionless form as

2
dy* 2 1 dyw, 2
el [ R ] -2

The above differential equation was solved by means of digital computer
calculations. The resulting numerical solutions of equation (5.9) are
given in Figure 5.4 for various B values, The dimensionless mass flow
rate values were obtained from the same program and are given in Figure
5.5.

The above description includes the inertia of the fluid as associated
with the time varying, or transient, condition of the flow in the absence
of viscous effects for zero pressure drop. The fluid is at rest initially,
and all of the curves exhibit a zero discharge velocity and mass flow
rate at t = 0, For small discharge openings (a << A and 8 »>» 1) the flow
accelerates rapidly, with respect to the total discharge time, and the
system behavior, after the initial brief period of acceleration, closely
approximates that predicted previously (Figures 5.2 and 5.3). For larger
discharge openings the flow is considerably retarded over relatively
longer times due to the inertia of the fluid during its initial period
of acceleration. However, the predicted total discharge times are, for
all practical purposes, fairly independent of § except in the range where
B decreases to values smaller than 2. Even though the fluid inertia re-
tards the flow initially for these situations, it also has the effect of
maintaining the flow rate at higher values during the deceleration period
so that the overall discharge time is almost unaffected.

Figures 5.4 and 5.5 can be used to ascertain the range of usefulness

of the results given in Figures 5.2 and 5.3 which do not account for
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- flow result
Eq.(5.4)
0 ) | ! 1
C) 49 14& .53
Figure 5.4, Variation of Liquid Height with Time from Analysis

Based on Transient Flow in the Absence of Viscous
Effects for Zero Pressure Drop
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I~ T l T |
B=10.0
=4.0
8 R =
B=20
m¥* 4
.4' T \ —J
Quasi-steady \
F flow result i
Eq.(5.5)

0] | I i |
o) 4 t* .8

Figure 5.5. Variation of Mass Flow Rate with Time from Analysis
Based on Transient Flow in the Absence of Viscous
Effects for Zero Pressure Drop
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local acceleration effects. For many typical situations (where g »> 1)
predictions based on the quasi-steady flow model (Figures 5.2 and 5.3)
are quite adequate for engineering purposes. Figures 5.4 and 5.5 show
that although the inertia effect tends to retard the discharge initially,
there is very little overall effect on the height versus time curve or
total dimensionless discharge time unless 8 is small, that is, unless the
discharge area, a, is of the same order of magnitude as the container
area, A.

The results given in Figures 5.4 and 5.5 have been reported pre-
viously (Ref, 25, 26). Shortly thereafter, Sestak et al. (Ref. 27) gave
an analytical solution for equation (5.9) in terms of Complete ahd In-
complete Beta Functions. This solution gives plots identical with those
given in Figures 5.4 and 5.5 (this will be illustrated in the next sec-
tion). These results apply for ideal discharge only, i,e., when viscous
and stream contraction effects are not taken into account. However, in
actual situations these effects should be considered. In the following

section this aspect is considered.

Transient Discharge Through an Orifice TakingﬁViscous and

Contraction Effects into Account

In each of the analyses considered thus far viscous effects have
been neglected. Also, it has been assumed that the streamlines are all
perpendicular to the cross-sectional area at the location of the opening
{Ref. 43}. Under certain conditions, which depend, in general, on
geometry and on a Reynolds number associated with the flow, the discharge
stream may contract to a smaller diameter as shown in Figure 5.7. For

this situation the streamliines at the discharge opening are not all
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perpendicular to the cross-sectional area of the opening. At the loca-
tion where the streamlines do become perpendicular to the cross section,

" the area of the stream is somewhat reduced. Both viscous effects (Figures
5.6 and 5.7) and the contraction effects (Figure 5.7) tend to make the
discharge rates smaller than those predicted for ideal flow (Figure 5.5).
They are accounted for in a conventional manner (Ref, 3) and are now
superimposed upon the treatment yielding the results given in the previous
section, The corresponding physical model is based on the description

below.

Table 5.3: Physical Effects

Forces Fluid Acceleration

Boundary Forces [] Local Acceleration

Gravity Forces

(10 B

Forces due to External [x] Convective Acceleration
Pressure Drop

Viscous Forces

(=]

In the analysis which follows fluid local acceleration effects are
taken into account. The physical effects indicated above are all ac-
counted for, at least approximately. The retardation of the flow
is specified by means of a velocity coefficient, Cv, and a contraction
coefficient, Cc (see Ref. 3). The reduction in flow rate due to both
effects is specified in terms of a discharge coefficient, CD’ which is
the product of Cv and Cc‘ Typical values of these coefficients (obtained

from Ref. 4), which are vaiid for large 8 values are indicated in
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Figures 5.6 and 5.7,

The equation for ideal discharge of fluids from a container is

Lr w20 1o e G’ ] (5.9)

dy* 8% dyn2 2
procil ol R (.10)
Since
, |
dy* d  dy*, _dy* d o dy*. 1 d  dy* 2
;;‘f‘z“ T @ TG @ T Te @ (5.11)

equation (5.10) can be written as

2

%;C'.&. - ;B:r r = - 4g% (5.12a)
where
&

After multiplying throughout by the integrating factor

- = dy* 2 2
* - £ -
e Y =B Iy, B
equation (5.12a) can be written as

2 2
3—:-;.- (cy*™®) = - 4g® yo7B (5.13)
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Integration of the above equations gives

y*=y*
£=g
2 y* 2
gy (87 - - 4g? f yr (87D gy
y*=l 1
=0
or
#*
c y,(~62) .4 B y.(-32+1) y
-B87+1 1
A e ]
-8 +1 %
Therefore
dy*. 2 4 82 g2
[ = (3%:9 il DN
B -1
So
2 L 5 -1
& 4 2 2
871

The negative sign is chosen because y* decreases with increasing t*. The

discharge coefficient is defined by the equation

«

m = CD m, (5.15)

actual ideal

where m 's represent mass flow rates. Thus for the case of discharge of
a container through an orifice, when viscous and stream contraction ef-
fects are taken into account equations (5.14) and (5.15) can be combined

to yield
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21 2. o3

or, writing 62 = a for convenience,

1 1 1
T 3 wa-1y7

g%; = - Cp (%%TQ cy* (1 -y (5.16b)

In equation (5.16b) C_ varies with Reynolds number and thus is a function

D
£ and t*. In certai tical f interest, however, C, can

° 3%;-an . In certain practical cases of interest, ever, C, ¢
be taken to be constant. The validity of the assumption of a constant
S and the discrepancies arising out of it are discussed later. With C,
constant equation (5.16b) can be integrated further to obtain t* as a
function of y* as follows. Integration of equation (5.16b) between t* = 0
and t*¥ = t* gives

t* L, 1 -1

f dt*a—lmcﬂ)zf ye 2 -yl 2 gy

0 CD 4a y*

Substitution of y*(“'l) = u in the integral on the right hand side yields

1 1 - 1 . 1 2-a
t* = %w (%&192 { u EEa'i)(lmn\} z, ELT u;:T du
b ¢ -
yg(awl)
1 1 3-2m i L
1 1 2 Z(e-1) 2
y,(a-l)

The integral in equation (5.17) can be expressed in terms of well known

Beta and incomplete Beta functions, as Sestak et al. (Ref. 27) have done.
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From the definitions of Beta fumction, B(p,q) and incomplete Beta function

B (p,q) (Ref. 29)

.
j sP-1 (:l-:-s)q"‘1 ds = B(p,q) - B, (p.q)
x

= B(p,q) [1 - I (p,q)] (5.18)

So equation (5.17) can be written as

) 7 eyl -0
* 1 -
vet ) | O -w® - du
g1
y
Thus
7
Ll 1 11
v g eyl By 0 P

1 1
[} ) Iy*(uwl) (Ziawli ’ 59} (5.19)

The result given by equation (5.19) reduces to the solution given
by Sestak et al. (Ref. 27) for the case of ideal discharge of fluids
where there are no viscous and contraction effects and the discharge co-
efficient is 1.0. It can be observed that the actual time taken to reach
any particular height since the initiation of d ischarge is increased
with respect to the ideal solution by a factor é;-. This means that the
total discharge time also is increased by (éE? . Of course, the above
analysis assumes that the factor CD is a constant throughout the period
of discharge. The limitations of such an assumption are discussed in the
following section. The results are essentially the same as those shown

in Figures 5.4 and 5.5, with the abscissa changed to read (CD t*) instead

of t* and ordinate for mass flow rate changed to read (é%~ﬁ*) instead
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of m*. A program for obtaining numerical results from equation (5.19)
is presented in Appendix D. In this program the Beta function was

s r |y
evaluated using the well known formula (Ref. 29), B(x,y) = uéx;*y( ),

and the incomplete Beta function was approximated (Ref. 30) by Soper's

formula

X

el ael g oa XP 2. _X,q-1 a1
Bx(p,q) jo X (1 X) dx ~ TB:TTngfy [? 1+ 4(1 ia % p(l X) ]

The computations have been carried out on the CDC 6500 computer. Figures
5.8 and 5.9 illustrate that the numerical solution of the differential
equation (5.9), modified to include the effects of geometry and viscosity
(the t* scale expanded by a factor %6 and ﬁ* scale reduced by a factor
Cpls and the complete solution given in equations (5.19) and (5.16a) are
identical. The total time for discharge, obtained by substituting y* = ¢
in equation (5.19), is given by

1
2

1 1 1
[4G(a*1)} 8(2(0_1) » 50 (5.198)

£E = e

i
t CD

Discussion of the Discharge Coefficient, Cp

It is appropriate at this point to include a discussion of the dis-
charge coefficient CD’ since it is typically used whenever orifice dis-
charge is encountered. If the gquasi-steady analysis is modified to in-
¢lude effects of external pressure drop, of geometry and of viscosity,

equations (5.4) and (5.5) become

yr=1-2 [1+ -g-gﬁ (€yt*) + (Cpth) (5.20)
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and

o AP R
_ me[){ #‘-‘;-é-ﬁ--'cnt] (5.21)

Variations of y* and m* with respect to t* as given by the above equations
are shown in Figures 5.10 and 5.11, to illustrate the retardation effect
produced by CD < 1 for two different values of fgﬁ"

In the previous analyses it was assumed, implicitly, that the dis-
charge coefficient is a constant throughout the discharge process. Such
an assumption yields good predictions, as will be shown, but there are
certain limitations.

Figure 5.12 shows the variation of C, with Reynolds number (based on
total head), as given by Vennard (Ref. 31), which is applicable to quasi-
steady flow conditions when y/d > 5 and forA% >> 1. When y/d % 1 or
smaller, the lowering of the liquid surface into the vicinity of the out-
let obviously causes considerable variation in the fluid streamline pat-
tern at the exit. Thus, for small values of'y/d some deviation from the
CD curve of Figure 5.12 can be expected. Since (§a = éb . (ﬁﬁ, this im-
plies that even when éi%ii s %-, and %%ﬁ are held constant, various values
of CD can be obtained by varying %-in the operating range where (%J . (%9
is small, Also, the curve of Figure 5.12 applies only if %,,> 1. when
d is large, approaching the value of D, the cylindrical container wall
effects the streamline pattern in the vicinity of the outlet, so that CD
varies with % in general. This can be expected on the basis of CD values
obtained for flow through an orifice in a tube full of liquid (Figure 5.13),

a situation which is not quite the same as the case discussed here, but

is somewhat similar.
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Figure 5.10, Variation of Liquid Height with Time from Analysis
Based on Quasi-Steady Flow in the Presence of Viscous
Effects for Non-Zero Pressure Drop, Equation (5.20)



46

50 1 I | ]

40} —— Cp=05 o

F‘-s_\
30 -
m¥*
AP =10
PgH
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'.O"\ el
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Figure 5.11. Variation of Mass Flow Rate with Time from Analysis
Based on Quasi-Steady Flow Including Viscous Effects
for Non-Zero Pressure Drop, Equation (5.21)
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On the basis of the discussion above, it is clear that CD is some-
what dependent on g‘and guin addition to the dimensionless ratios appear-
ing in the abscissa of Figure 5.!2. Therefore, all of the dimensionless
parameters given initially in equations (3.2a) and (3.2b) are appropriately
inciuded in the results given by equations (5.19) through (5.21).1 How-~
ever, the results given by the above equations are not exact in general
since CD was assumed constant throughqut the discharge period in their
derivation. In reality CD may be expected to vary somewhat with time as
y decreases (Figure 5.12), Despite this fact, use of a constant CD value
for an entire transient run can be expected to produce reasonably accurate
results in many typical situations where Qﬁ?&i /%—4 §§ﬁ-remains some-
what above 104 throughout most of the discharge period (Figure 5.12). In
this case CD is very close to 0.6 during most of the process (provided
that %»>> 1), except for possible changes in CD occurring at the very end
of the process (%-% 1, or smaller) brought about by an alteration of the
flow pattern as the liquid surface is lowered into the region of the exit
(Ref. 18).

To illustrate the effect of the variation of CD with Reynolds number
on the discharge process, the curve in Figure 5.12 was approximated by a
series of straight lines. In all the cases discussed below the instan-

taneous Reynolds number was calculated and the corresponding C_. value was

D
used in performing a step by step integration to obtain the curves for y*
vs, t* and m* vs, t*, Further, égﬁ-was taken to be zero, because this

situation gives the greatest variation in Reynolds number and hence in CD'

Figure 5.14 shows the variation of Reynolds number (abscissa of Figure

1Note that L/d = 0 in this treatment, while a/A w(d/D)2 and B = /{D/d)u - 1
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5.12) with dimensionless time for quasi-steady discharge through an or-
ifize, for two vaiues of the ratio ﬁm{?ﬁ . 10° and 163 respec~
tively, Figures 5.15 and 5.16 illustrate the variation of y* vs. t* and
m* vs., t*, The solid lines were calculated assuming the discharge co-
efficient (CD), evaluated at the initial Reynolds number, to be constant
for the entire run. The + marks indicate the results of the stcp'b& step

integration procedure for the situation in which C_, varies with Reynolds

D
number (as given in Figure 5.14), It is evident that there is very little

difference between the two sets of results for these ranges of g{%ﬁﬁ

(103 and above). However, it is worth noting that when éigég = 105
(curves @ in Figures 5.15 and 5.16) a slight increase in discharge rate

is digscernable, due to an increase of CD in the range from 0.6 to 0.75,
Figures 5,17 through 5.19 illustrate these results for transient flow,
where the Reynolds number varies from zero to a maximum and then decreases
to zero. Note that unlike in the quasi-steady flow case (where the
Reynolds number is based on the ideal discharge velocity), the Reynolds
number is calculated using the instantaneous discharge velocity. The
trends are identical with those obtained for quasi-steady flow. There-

V2gH 3

fore, when guégﬂ-is 10" or higher predictions can be made using the Cp

evaluated at 51%55 (from Fig. 5.12) without incurring significant errors.

dv2g

In the lower ranges of 5 H {100 and beiow) CD drops from 0.75 to

zero. In this situation viscous effects become highly dominant. Figure

5.20 shows the variation of Re (abscissa of Figure 5.12) with t* for

dv2gH
N

quasi-steady flow when = 50.0, Figures 5,21 and 5,22 illustrate

the effect of variation of C, with Re on y* vs. t* and m* vs. t* respec-

)]
tively. Again, the solid lines were computed by using the initial CD

value for the entire run, A constant CD gives a linear variation of n*



51

with t* (see equation 5.21)., 1t is evident from Figure 5.22 that a con-
stant CD (appropriately evaluated at a lower Re) cannot predict the
variations correctly for the entire run. Figures 5.23 through 5.25
represent similar results for the case of transient flow when 8 = 4.0
and éﬁ%ﬁﬁfa 100. In this situation, it is interesting to note that the
discharge process takes a long time to get started because of the low
value of CD (in the range from zero to 0.05) when Reynolds number is
very small, Therefore, in cases where gigﬂi is less than 100 (i.e. for
highly viscous flow and/or with low initial heads) the strong variations
in Cp with Re cause predictions from equations (5.19) through (5.21) to
be quite inaccurate. Thus, a word of caution is in order with respect

to the ability of equations (5.19) through (5.21) to predict the actual

discharge behavior in certain operating ranges,
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CHAPTER 6
LI1QUID DISCHARGE THROUGH A TUBE

Quasi-Steady Discharge Through a Tube

The previously presented analytical results apply to liquid discharge
through an opening at the bottom of the container (Figure 5.1) and cor-
respond to the special case of % = 0, In this section, discharge of a
liquid from a container through a tube is considered. The analysis is
based on quasi-steady type flow, which accounts for all of the physical
effects except those due to local acceleration. It can be recalled that
the local acceleration effects were found to be important only if the
size of the discharge opening approaches the cross-sectional area of the
container (B < 20). This case, where the local acceleration effects are
taken into account, is presented in the next section,

The physical effects associated with the procedure outlined above

gre summarized in the feollowing table,

Table 6.1: Physical Effects

Forees Fluid Acceleration

Boundary Forces [l Local Acceleration

Gravity Forces

EVREINET

Forces due to External [x] Convective Acceleration
Pressure Drop

Viscous Forces
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The details are presented in Appendix C and the results are discussed
herein, According to equations (C7b) and (C8b) the variation of the
dimensionless liquid height and the dimensionless mass flow rate with

dimensionless time are respectively given by

1
Cc, + C C
2 3.2 2 2
y* =l - ()Tt e 7w (6.1)
1 1
and
. Cz‘cs% C,
m* = = ( Cl )T - 4Cl T (6.2)

where Cl’ C2, and C3 are defined by equations (C5d). These results are
presented graphically in Figures 6.1 through 6.12, 1In all these cases
entrance losses were neglected (K = 0) and the results would apply to
discharge through tubes with rounded entrances. When there are no fric-

tion and entrance effects, i.e. for the case of ideal discharge of

fluids, equations (6.1) and (6.2) reduce to

' PPy L3 2
y*ﬂlmz {1+ +ﬁ) tE 4 ¥ (6.3)
pgH
and

i

P.-P oo

e 1772 1.2
m* = (1 + T wo- ot (6.4)

indicating that both y* and m* are independent of the parameters 8 and %u
These results are depicted in Figures 6.1 and 6,2,

Even when the friction factor, f, is not zero variations in 8 and %
have only a small effect on the variations of y* and m* with t*. Accord-

ing to Figure 6.3 when B8 is changed from 20 to 1, the change in total
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dimensionless discharge time is only about 2.3%, Similarly, when %-is
altered from 1 to 10, total time of dischargel is changed by about 2,5%
(Figure 6.5). However, Figure 6,7 indicates that when %'is increased
from 0.1 to 1.0 the total discharge time is decreased from 0.667 to 0.405,
a change of about 40%. This is due to the smaller quantity of liquid to
be dischaiged from the container. Also, when the external pressure drop
(P1 - Pz) is increased, the mass flow rates are increased and the total
discharge times are decreased (Figures 6.9 and 6.10). Figures 6.11 and
6.12 show that an increase in the friction factor, which is in part de-
pendent on the Reynolds number éiggﬁ , causes a flow retardation, a result
that is to be expected. The results presented here were obtained by as-
suming f to be constant for the entire process. A method for choosing a
suitable constant value for f for a given set of experimental conditions
is described in Chapter 7.

In general it is seen that when the local acceleration effects are
neglected, changing the value of 8 has very little effect on the instan-
taneous mass flow rates and the total discharge times. For the case of
discharge through an orifice it was shown that even though the total
dimensionless discharge time remained essentially constant for 8 » 2 the
instantaneous mass flow rates were very much different from those pre-
dicted by the quasi-steady analysis. Also, these varied considerably with
B, the fluid taking more time to accelerate to its maximum velocity when
B is decreased. For this reason, an analysis accounting for local acceler-

ation effects is presented in the following section of the report for

the case of discharge through a tube.

lln this discussion total discharge time refers to the dimensionless
quantity, te/8v2H/g.
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Figure 6.1. Variation of Dimensionless Liquid Height (y*) with
Dimensionless Time (t*) for All Values of the
Parameters 8 and L/d when £ = 0
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Figure 6.4. Variation of m* with t* for Various Values of the
Parameter R when Friction Factor f # O
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Figure 6.5. Variation of y* with t* for Various Values of the
Parameter L/d when £ # 0
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Figure 6.7. Variation of y* with t* for Various Values of the
Parameter L/H
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Figure 6.8, Variation m* with t* for Various Values of the Parameter
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Transient Discharge Through a Tube

In this section of the report an analysis of transient discharge of
a container through a tube, which takes local acceleration effects into
account.'is presented. Forces due to viscous shear and external pressure
drop are also considered. These conditions are summarized in the fol-

lowing table.

Table 6.2: Physical Effects

Forces Fluid Acceleration

Boundary Forces (x] Local Acceleration
Gravity Forces

Forces due to External [] Convective Acceleration
Pressure Drop

ETRERCI TN E]

Viscous Forces

It is assumed that:
1) the flow is one dimensional
2) the flow is incompressible and single-phase
3) the surface of the fluid is horizontal at all times
4) friction and inertia effects in the container are
negligible, so that the pressure at the entrance to the

tube is given by Bernoulli's equation.z

I%his assumption is valid only if the discharge tube diameter is small

enough, relative to the container diameter, so that the frictional and
inertial effects associated with the higher velocity levels in the tube
outweigh these same effects for the fluid in the container,
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5) the friction coefficient for flow through the tube is
constant during the transient flow period,
6) energy dissipation corresponding to entrance losses at

the tube inlet are negligible, unless otherwise specified.3

Figure 6.13 shows the system configuration at a particular instant
of time. The principle of conservation of momentum is applied to the
fluid within the control volume shown in dashed lines surrounding the

fluid in the tube. Thus,

Rate of increase Net Flux of Net Force
of momentum of the | + | momentum = | Acting on {(6.5)

fluid in the C.V. out of C.V. the C.V.

By continuity (since the fluid is incompressible) the mass of fluid
entering the control volume, pA(- %%9, is the same as that leaving the
volume, Since the tube has a constant cross-sectional area, the instan-
taneous velocities of inflow and outflow are equal. Hence the net
momentum flux across the boundaries of the control volume is zero. By

assumptions (4) and (6), the pressure at Q is given by

P} =P, + ogy - %-082 (%%Jz (6.6)

where

pa (B2 -1

3Although this assumption is made here for the sake of simplicity in pre-
senting the essential features of the analysis, entrance losses can be
taken into account as in the case of Quasi-Steady Discharge through a
Tube (See equation (C1)). They were introduced into the calculations
made for sharp-edged entrances (See Chapter 7).
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The fifth assumption yields the frictional force (Ref. 33) on the control

volume as
1 A dy,2
an'toﬂdol,ag.fp(n: a%) e wd ¢ L (6.7)

Finally, the momentum of the fluid within the control volume is given by
{paL(; %- %%J]. The net force on the control volume includes the gravity
force pgal (i.e., the weight of the fluid). Consideration of this force
along with the pressure and viscous forces makes it possible to rewrite

equation (6.5) as

& loal(- 2 ) = [P+ oy - 308 (FH*1a-Pp

2 .
- %-f e p e (--% g%a e nd o L + ppal (6.8)

After dividing equation (6.8) by (- pA) and rearranging terms, the re-

lationship becomes

2
9y  lp2a, gA Ly dn2, oa
v AL S A @ regy
P,-P
1
= - [ = 2‘+ gL] %- (6.9)

Equation (6.9) describes the variation of height of the liquid in the
container as a function of time for the case of discharge through a tube
under the assumptions listed previously. The initial conditions for the
problem are y = H and %% = 0 at t = 0. By introducing the dimensionless
time, t*, and dimensionless liquid height, y*, as defined by equations

(5.3), equation (6.9) is expressed in dimensionless form as
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L dy* 1 ,.2a A L, . dy= 2 2a
" dt,Z"?[B arfg gl G s gy
P,-P
L 1772 L, a .2
& 2 [Tgﬁm* ﬁ’] x 8 (6.10)

Now the initial conditions become y* = 1.0 and g%; = 0 at t* = 0,

It can be shown from equation (6,10) that the dimensionless liquid
height, y*, and the dimensionless mass flow rate, ®*, are functions of
all the dimensionless parameters obtained in Chapter 3. Note that 8 and
% are functions of %u The friction factor, f, which can be obtained from
the Moody Chart (Ref. 3}, is mainly a function of the characteristic
a/2gH

v

*®
Reynolds number and %%? for the range of conditions studied experi-

mentally in this investigation.4 This means in general it is also de-

pendent on the other dimensionless parameters é%ﬁ" %-.'% ., and %». For

any given geometry the ratios %’v %-, g, %’, f and ggﬁvare known and the
coefficients for the various derivatives in the above differential equa-
tion can be calculated, Eduation (6.10) was solved by a Fourth-Order
Runge-Kutta method, with the indicated initial conditions, to obtain the
dimensionless liquid height and the dimensionless mass flow rate as func-
tions of dimensionless time for various geometries. The numerical inte-
grations were performed on an IBM 7094 computer, and the program is pre-
sented in Appendix E. The results are shown in Figures 6.14 through 6,25,
Figures 6.14 and 6.15 show that as B is decreased, the fluid is re-
tarded due to local acceleration effects even when viscous and entrance

loss effects are neglected. Decreasing 8 from 20 to 2 increases the

dimensionless discharge time from 0.436 to 0.65 or by about 50%. As the

4The results given here were obtained by assuming £ to be constant for the
entire process. See also "Discussion of the Friction Factor, f' at the
end of this Chapter.
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discharge area is increased in relation to the container area, the fluid
spends more time in accelerating to the maximum discharge rate. When 8

is increased the results of the present analysis approach those obtained
by the quasi-steady type analysis. Even for high 8 values also the transient
analysis gives the initial mass flow rate (at time t = 0) as zero, which
is a physical fact, However, in this case the fluid accelerates very
rapidly to its maximum discharge rate.

Figures 6.16 and 6.17 indicate that when frictional resistance is
neglected the parameter %-has no effect on the discharge process and
Figures 6.18 and 6.19 show that even when friction is not zero the in-
fluence of g is quite small. It can be noted that an increase in %-from
1 to 10 increases the total discharge time by only about 3%,

As in the case of quasi-steady type flow, variations in the param-
eter %»have a large influence on the discharge times, (Figures 6.20 and
6.21). Increasing ﬁ-from 0.1 to 1 decreases the total discharge time by
about 28%. It is interesting to note that the curves for the various %
values cross over, This is due to the fact that for lower values of this
parameter, the fluid accelerates faster at the beginning of the discharge
process because of the higher initial head, The larger column of fluid,
having a higher inertia, requires a greater total time for the discharge.

Figures 6.22 and 6.23 show that for increasing external pressure
drop the fluid is discharged faster. Also, the fluid spends a greater
percentage of total discharge time in an accelerating condition as %%H
is increased. For instance, when %gn-s 0 the fluid takes less than 40%

of the total time to accelerate to 90% of its peak value. But when %%ﬁ'

= 20 it takes 50% of the total time.
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Finally, Figures 6.24 and 6.25 illustrate the effect of increasing
the friction which retards the flow, as was previously mentioned, and

can be easily understood on physical grounds,

Transient Discharge Througp a Tube for

Large External Pressure Drop

A very interesfing problem involves pressure driven discharge of a
container through a tube. A closed form solution for the governing dif-
ferential equation in terms of well known elementary functions can be
obtained when the external pressure drop, (PI-PZ), is large in comparison
with the hydrostatic head in the container, By transposing terms, equa-

tion (6.9) can be written as

2
dugendoh @y
P ~P
e - 1pz+g(y+1,)]§.. (6.11)

If the external pressure drop is large compared to the hydrostatic head,

P,-P
then } + gl »> gy, and equation (6.11) reduces to

Ldz u}"[gzﬁ*f.ﬁ.l‘](d)z

i 2 A a d ‘dt

t

R

- 1 2 a
= - (Sl § . (6.12)

Equation (6.12) can be written in dimensionless form as

2
L, d°y* 1 2 a A L dy*®, 2
(ﬁ)zgz-?lﬂ K*f';'g](t*)

L, a
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if (?1~P2) does not vary with time, equation (6.13) can be written as

2 & ®
NEX L (Eole - (6. 14a)

de*
where
L
Naﬁ
2_1.2a AL
C=zB g+f-3-37 (6.14b)
P,-P A
and 2.l 2, L 2 2

AT R L Y

: ]
The initial conditions to be applied at t* = 0 are y* = 1.0 and %%:-n 0.
A complete solution can be obtained as follows. By writing %%; = y* and

rearranging terms, equation (6.14a) becomes
dy* 2 2,2
N = - R - Q° y*%) (6.15)

Since y* is always negative the left hand side of equation (6.15) is

negative, Therefore Rz > Q2 }*2. Hence

L

1 (7 Y' o aye
“ﬁ'[ dt‘“J gy~

o o R°-Q° y*
i {t*]t* = 2-. 'ranhul‘ gi-..] )
"N ar | R

Therefore

%}*w'l’anh («-%-R—t*) a»’!‘anh%gt*
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Hence

g{{- = - -g-'ranh @ ) (6.16)

Integrating once again, with the initial condition y* = ] at t* = 0, gives

y* R t*
- J, dy* = -Q- j Tanh (%E t*) de*

i ]

(1 -y*) = %. gﬁ-zn (Cosh %5 t*)

Finally, the dimensionless liquid height is given by

y* = 1 - E‘z tn [Cosh (- t*)] (6.17)
Q

Equations (6.17) and (6.16) are presented graphically in Figures 6.26
and 6.27 respectively. These are compared with the numerical solutions
for the complete equation (6.10), obtained by the Fourth-Order Runge-Kutta
method, Even for %%ﬂ'ﬂ 5.0, the approximate solution predicts the be-
havibur of the fluid quite well. As expected, the approximate solution
approaches the exact solution as %%H-is increased.

Figures 6,26 and 6.27 are plotted for ﬁ-n 1.0 and %»w 5.0, For ob-
vious reasons the approximation should become better if %-is increased.
But if B and %-are kept constant and %-is inordinately increased, the
ratio of g-falls off, This means that the initial height of the liquid
in the container is of the order of the discharge diameter or less. In
such a case the analysis ceases to be valid owing to the free surface of
the liquid dipping into the discharge tube. On the other hand if both

%-and %-are increased the tubes may become too long for the assumption
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of one-dimensionality to be valid. Therefore a word of caution is
necessary with regard to the ability of equations (6.10) and (6.17) to
predict experimental behavior beyond certain ranges of %»and %u

Once again, an important difference between the quasi-steady flow
analysis and the transient flow analysis is discernable. In the case of
quasi~steady flow discharge, when %gﬁ is increased m* increases and re-
mains nearly constant at its peak value throughout the period of dis-
charge (see Figure 6.10)., But the unsteady flow analysis shows that as
%%ﬁ is increased, the fluid spends a major portion of the total discharge
time accelerating from zero to the peak value of the mass flow rate during

this period (see Figures 6.23 and 6.27).

Discussion of the Friction Factor f

The friction factor, f, which is used for flow through tubes, is in
general a function of the Reynolds number (fgga and the relative roughness
of the tube. For smooth tubes, the friction factor is a function of
Reynolds number only. Formulae for the variation of friction factor with
Reynolds number (for different ranges of Re) for fully developed pipe flow
are well known (Ref. 33). In the entrance section where the flow is not
fully developed, due to the acceleration imparted to the fluid near the
center of the tube, the friction factors have larger values (Refs, 34, 35).
However, Weiland and Lowdermilk (Ref. 36) have found experimentally that
the average friction factors are not affected by the acceleration in

the entrance section wh ¢n the Reynolds numbers are above 30,000 for

tubes with %-w 15.
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In obtaining the results for discharge of a container through
a tube, the friction factor was assumed to be constant. The range of
validity of this assumption for flow under a varying head (quasi-steady
and transient) and when the discharge velocity is zero initially (trans-

ient) is discussed in this section. The Reynolds number for the flow

dv
2 d[- (A/a)(dy/dt)] 1 d¥ZgH A 1 , dy*
v v -7 ng’ a B ‘*3%“9'

in the tube is given by Re =
Figure 6.28 shows the variation of Re with t* for two situations for
quasi-steady discharge through a tube. Figures 6.29 and 6.30 illustrate
the effect of a varying f on y* vs. t* and m* vs. t* respectively. The
solid lines were computed using f = 0.015 and assuming it to be constant.s
The + marks were obtained for the same initial conditions, but accounting
for the variation of f with Re. This was accomplished by carrying out a
step by step integration of equation (C5b). It can be observed that there
is practically no difference between the two solutions. Similar results
for the transient flow case, where the Reynolds number varies from zero

to a maximum and falls off again, are depicted in Figures 6.31 through
6.33. In these cases the + marks were obtained by means of a step by

step integration of equation (6.10). Figure 6.34 shows the variation of
Re with t* when éﬁ%ﬁﬁ:a 2000, The sudden changes in siope of the curves
in the neighborhood of Re = 2000 are due to the flow being assumed to
change from turbulent to laminar at that Reynolds number. Figures 6.35
and 6.36 depict the effect of the variation of f with Re (as shown in
Figure 6.34) on y* vs, t* and m* vs. t* respectively. In these figures

the solid lines were computed using f = 0,035 (as compared to 0.015 in

Figures 6.29 and 6,30). Similar results are shown in Figures 6.37 through

SFor a method of estimating f for a typical situation see Chapter 7.
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6.39 for the transient flow case when éf%éﬁ = 2000 to illustrate what
happens in the low Reynolds number range. Thus, it can be seen that
even though the flow in the tube changes from turbulent to laminar
(changing the f vs. Re relationship significantly) the predictions ob-
tained using a constant value for f compare very favorably with those
obtained using an f which varies continuously with time in accordance
with the instantaneous Reynolds number. It is clear from the illustrations
described above that in most ranges of the parameter gzggg:where the
analyses given in the earlier sections of this chapter are valid, a
judicious choice of f,6 taken as constant throughout the discharge pro-
cess, yields predictions of acceptable engineering accuracy. However,
it should be emphasized that this procedure may lead to considerable

errors when d 3 i is somewhat smaller than 2000,

6For a method of estimating f for a typical situation see Chapter 7.
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CHAPTER 7

EXPERIMENTS

Experiments were performed with water using plexiglass containers
(Figure 7.1) and tubes (Figure 7.2) to facilitate visual observation and
television tape recording (Figures 7.3 and 7.4). The choice of containers
and discharge tubes was governed by the sizes of commercially available
plexiglass tubes, Table 7.1 gives the diameters of the containers and
tubes which were used, along with the corresponding dimensionless ratios
characterizing the geometry. Eight different cases are indicated, but
only two of these cases yield B-values which are approximately the same
(see the first and last entries in Table 7.1). Therefore, these two were
used to investigate the effect of changing the size of the system without
appreciably altering any of the other pertinent dimensionless parameters.

Due to laboratory space limitations, the container height was re-
stricted to 48", Experiments for discharge through an orifice were con-
ducted using the 5.5' diameter container with a 2,5" sharp-edged hole in
the base plate and adapters having 2" and 1.5" holes. For investigation
of discharge through a tube, discharge tubes of three different diameters,
each with %-values of 1.1, 5, and 10 were constructed. Two base plates
were made to accomodate each of the diameters, one with a rounded entrance
as shown in Figure 7.5 and another with a sharp-edged entrance. The
rounding of the entry was done according to Powell's specification for

a circular arc profile (Ref., 37). Containers of 3 different diameters
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Table 7.1, Geometric Parameters Used in Experiments
Container Discharge Area
Diameter {in.) Diameter (in.) Ratio B
10,97 5.46 4,03 3.91
10.97 3.95 7.70 7.64
10,97 2.95 13.78 13.74
8.95 5.46 2,68 2.49
8.95 3.95 5.13 5.03
8.95 2.95 9.18 9.12
5.49 3.95 1.93 1.65
5.49 2.95 3.45 3.31
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could be adapted to each of the base plates. To summarize, there were
9 tubes, 6 base plates, and 3 containers which made it possible to in-
vestigate a large number of d;fferent geometries (for discharge through
a2 tube). The containers were centered with respect to the discharge
cpening by use of an L-square and were held firmly in place by a top
plate and 7/16" diameter threaded brass rods., A 3" diameter opening in
the top plate was used to fill the container with water. A manually
operated gate valve was employed to initiate the discharge. Specially
prepared measuring tapes, with markings at 2'" intervals, were attached
to the containers so that the liquid height could be easily determined
to an accuracy of 0,1" from the TV screen. A Standard Timer with a 9"
dial was used to record the time, The time resolution was 0.01 sec.

The discharge process was recorded on video-tape, and the instantan-
eous liquid heights and the corresponding times were read out by means of
a closed circuit stop-action TV system. The TV recording system consisted
of a Fairchild TC-175 camera equipped with a zoom lens, an Ampex VR-7000
videotape recorder, and a Sony (Model PVJ-3030) 5" video monitor which
was mounted on top of the camera to serve as viewfinder. In addition,
an Ampex VM-9A portable video monitor was used for playback of the taped
data which could be read out easily while operating the tape recorder in
the stop-motion mode (Figure 7.4). The camera had a resolution of about
350 lines. In the stop-motion mode of operation the discharge process
was examined frame by frame (60 frames/sec.). The time of initiation of
discharge (t = 0) could be determined to within 0.02 sec. The instantan-
eous liquid height, y, and the corresponding time, t, were tabulated and
non-dimensionalized to yeild the corresponding values of y* and t*. Some

of these experimental results are presented, along with the appropriate
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analytical predictions, in the following chapter. In calculating the
analytically predicted curves from equation (6,10) the friction factor,
f, was estimated as follows.

The Reynolds number in the tube is given by

d.v

2 1d2¢gH A 1 dy*
7 5E i@

AL 1, 1 and 1 dy* ‘. £ th
Py and the maximum value of (- 7 It ) = m* is also of the order

of 1.0 (see Figure 6.15). Therefore the maximum value of the Reynolds

dvZgi
v

number for the flow in the tube is of the order of . For the trans-
ient case, however, since the fluid is initially at rest, the Revnoldsnumber
is zero at the start of the discharge process and increases continuously

to a peak value of about Qﬁ%gg" and again falls off to a lower value

(see Figures 6.31 and 6.37). For water at 70°F temperature the kinematic

5 ft2/sec. With the acceleration due to gravity

viscosity v = 1 x 10~
g = 32.2 ft/secz, the parameter gw%ggfw1.93 X 104 dvH, where d and H are
in inches. Over the entire range of experiments Qm%Sﬂ varied from about

3 to 5.8 x 105. In this range the Moody chart (Figure 7.6) shows

2.21.x 10
that the friction factor varies very little, from 0.015 to 0.013. This
means the friction factor has a very high value at the start of a run
(because Re starts from zero) and decreases to the values indicated above
before increasing again. Thus the higher value, f = 0,015, for the fric-
tion factor was assumed for the entire range of experiments, for calcula-
ting the predicted curves from equation (6.10). As can be seen from
Figures 6.32 and 6.33, for this range of Re there is practically no dif-

ference between predictions with f = 0.015 assumed constant and those

with f varying as a function of Re.
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As mentioned in Chapter 6 (see page 80) the entrance losses were
neglected in deriving equation (6.10). This is acceptable for tubes
with rounded entrances. If entrance losses are introduced {as in the
case of Quasi-Steady Discharge through a tube, see equation Cl), equation

(6.10) is modified as

2
L d%y* 1 2 a A L A 2 a
H ;{7"3’[8 ""A’ffi H*KZ]*ZB 'KY*

p.-P
12 L|a 2

For steady flow through a sudden contraction (Ref. 31) K varies between
0.4 and 0.5 for B-values ranging from 4 tooeo. The higher value of K = 0.5
was used, analogous to the mannér in which the friction factor was treated,
in the calculations for transient discharge through tubes with sharp-

edged entrances.



Figure 7.1. Plexiglass Jontsiners
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CHAPTER 8

RESULTS AND CONCLUSIONS

The dimensional analysis for the problem of single-phase discharge
of a liquid from a container yielded the instantaneous dimensionless

liquid height, y* = %, and the dimensionless mass flow rate,

. m . . . .
m* = 5 , respectively as functions of six dimensionless

D i
p (=5 E’VZEH

parameters t/B \/3?-» . % s % . %—;- . —S—Eﬁ- and @ . Heat transfer, cavita-
tion and surface tension effects were not taken into account, Figures
8.1 through 8.3 show measurements that illustrate the correctness of the
parameters obtained by the dimensional analysis procedure, Equation
(3.2a) indicates that two systems having the same dimensionless parameters
%-, %-, %-, %gﬁ-and-gigai should exhibit a single functional relationship
between dimensionless liquid height, y*, and dimensionless time, t*. The
data shown in Figures 8.1 through 8.3 were obtained with two systems of
different sizes, but having essentially the same values for 4 of the 5
dimensionless groups just indicated, The fifth parameter, Q!%EE:, was
considerably different for the two systems compared in each figure, It
is interesting to note that experiment indicates that the dependence of
the y* vs. t* relationship on the parameter g-'%E;ﬁ--:is very weak, a fact
that dimensional analysis alone cannot reveal., Such weak dependence can

be expected, however, from the physics of the problem because the effect

of varying a Reynolds number is indirect. When the Reynolds number is
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changed, the friction factor which determines the resistance to the fluid
motion changes. But for the values of éﬁ%ﬁﬁ indicated (i.e. 2.21 x 10S

to 5.8 x 105), f can be‘assumed constant (see Figures 6.32 and 6,.33), The
measurements represented by circles were obtained with a 5.5'" diameter
container, while those indicated‘hy the triangles were obtained with a
larger container having a diameter of 11". The two systems were geomet-
rically similar. Two sets of data are shown for each container, and it

is apparent that the measurements were essentially reproducible despite
the fact that some scatter did result. The data imply that the instan-
taneous liquid height, y*, is a unique function of the dimensionless time,
t*, when the other 4 dominant dimensionless groups are each maintained
constant, Most of the discrepancy between two sets of results is attri-
buted to the fact that the two-% - values were slightly different, being
1.86 in one case and 2.01 in the other. Similar results are depicted in
Figures 8.4 through 8.6 for tubes with sharp-edged entrances for this more
complex flow situation. This supports the observation made in Chapter 3,
that the dimensional analysis results given in equations (3.3a) and (3.4a)
are valid if geometrical similarity is maintained and the physical con-
ditions assumed in their derivation are satisfied for the two systems.

An analysis of discharge through an orifice indicated that when the
flow is quasi-steady, the dimensionless liquid height and the dimension-
less mass flow rate vary parabolically and linearly, respectively, with
dimensionless time (see equations 5.4 and 5.5). It is interesting to
note that when the instantaneous liquid height, instantaneous mass flow
rate and time elapsed since the initiation of discharge are non-dimension-

alized as given in equations (5.3), the graphs of y* vs. t* and m* vs. t*
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are universal for this type of discharge. They are independent of the
geometric ﬁnfactors~% , %-, %v. The total dimensionless time for dis-
charge is always 1.0, indicating that when B is decreased (i.e. when the
area of discharge is increased in relation to the container cross-section-
al area) the actual discharge time decreases proportionately.

When transient effects are taken into account, equation (5.9) des-
cribes the behavior of the liquid height with time for discharge through
an orifice in the absence of viscous effects for zero pressure drop.
Figures 5.4 and 5.5 respectively illustrate the effect of changing the
parameter 8 on the variations of y* and m* with t*. They indicate that,
except for very low values of 8 (B < 4) and at very small periods of time
after the initiation of discharge, the inertia effects are essentially
negligible. In the cases where B8 > 4 the liquid accelerates rapidly from
rest and then very closely follows the quasi-steady solution. A complete
solution for equation (5.9) exists, and this solution can be expressed
in terﬁs of complete and incomplete Beta functions. This result is given
in equation (5.19) for the case where geometric¢ and viscous effects are
taken into account (by inclusion of the discharge coefficient, CD). A
comparison of the complete solution with the numerical solution of equa-
tion (5.9) obtained by a Fourth Order Runge-Kutta method is given in

Figures 5.8 and 5.9 for two different sets of conditions: 8 = 4, C 0.6

Dm
and 8 = 10, Cp = 0.82. These figures show that the solutions are identi-
cal, thus providing some confidence in the numerical techniques employed
in their evaluation., The total discharge time for transient discharge

of a container through an orifice, given by equation (5.19a), is
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1
te* = [33-(%:-1—5-]? B(-ﬂ-;i:ﬁ ' %)

and this is only about 1% above that given by the quasi-steady analysis
for 8 = 4, A comparison of the total discharge times obtained from the
two analyses is given in Figure 8.7.

Figures 8.8 through 8.11 depict the experimental results for dis-
charge through an orifice and comparison with theory. In Figure 8.8,
the experimental measurements are plotted for three different situ-
ations, The difference between the measurements for B = 4,76 (repre-
sented by solid circles) and for 8 = 7,58 and 13.65 (represented by the
hollow and solid triangles respectively) can be attributed to a differ-
ence in the discharge coefficients rather than to a change in B8-value.
This is apparent from Figures 8.9 to 8.11 where these three sets of data
are compared to theoretical predictions., In Figure 8.9 the results for
B = 4,76 are compared with theoretical curves for the same B and the two
different values of Cp for orifice flow given in Figures 5.6 and 5.7,
This indicates that for flow through orifices, where the thickness of the
orifice is not zero (i.e., L/d # 0) the dischavge coefficient CD lies
between 0.6 and 0.82. However, no clear cut method was found for estab-
lishing, a priori, the value of CD for a particular geometry. On the
other hand, it would appear from Figures 8.10 and 8.11, where experimental
results for B = 7.58 and 13.65 are compared with theory, that when %»3 1.0
the fluid fills the orifice (i.e. the hole in the base plate) and CD can
be taken to be 0.82 (see Figure 5.6). It is contended that these are
really cases of discharge through short tubes and that the analysis based
on transient flow through a tube should be able to predict the variation

of y* with t* accurately. The solid lines in Figures 8.10 and 8.11,



132

which were obtained from equation (7.1) and which account for losses due
to 2 sharp-edged entrance, support this contention.

For the case of discharge through a tube the analysis)based on quasi-
steady flow (equations 6.1 and 6.2), as well as the analysis taking trans-
ient effects into account (equation 6.10), gives the dimensionless liquid
height as a function of all the parameters obtained in the dimensional
analysis (equation 3.2a). It should be remembered that 8 is a function

g_%gg_ and

of g-and the friction factor, f, is essentially a function of
g%;. However, the quasi-steady analysis indicates that, when the friction
factor £ = 0, there is no effect of changing B, and even when f # 0 the
effect of varying B is essentially negligible. The only parameters which
have a significant effect on the discharge p}ocess are %-, %gﬁ-and f.
These results from the analysis based on quasi-steady flow have been
found to be valid only when B-values are large (8 > 20). The experimental
results for this case have been available for some time and are presented
in Ref. (25) and (2o).

The analysis which takes into account the inertia effects in the
tube indicates that B plays a very important role even when friction
effects are neglected, Since transient effects in the container were
neglected, this analysis is valid only for B-values in the neighborhood
of 4 or above. Figures B8.12 through 8.20 depict experimental results for
discharge of a container through a tube with a rounded entrance at low
B-values (B < 20). In all these figures the solid and dashed lines were
computed by numerical integration of equation (6.10) for the values of
the dimensionless parameters indicated. The friction factor, £, was

estimated by the method described in Chapter 7 and was assumed to be a

constant for the entire transient period. Further, entrance losses were
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neglected.

Figure 8.12 shows measurements for 4 different values of 8 and for
two different values of %-for each, when %'a 1.1, These results indicate
that when %»is small (i.e. approximately 1.0) variations in 8 and é-have
very little effect on the discharge process. This can be expected from
physical reasoning, because the inertia effects in the container are
negligible for 8 > 4 and the tubes are not sufficiently long.to dominate
the discharge process. Also, it can be seen from Figure 8.12 that the
analysis for orifice flow does not predict the actual behavior accurately
(note that the curves for orifice flow assuming transient effects will
all lie above the solid line. (See Figure 5.4). On the other hand, equa-
tion (6.10) predicts the experimental behavior quite accurately (once
again note that the dashed line Figure 8,12 is relatively insensitive to
changes in B8 for the values of other parameters indicated on the figure).
This supports the result discussed earlier, that when %-: 1.0 the dis-
charge of the container can be treated as if it occurs through a tube
rather than an orifice.

When %vis increased to 5 or 10, changes in B have a pronounced ef-
fect, the fluid taking more time for discharging as B is decreased.
Figures 8.13 through 8.16 represent the effect of changing 8 on the varia-
tion of y* with t* for several values of the other parameters (%-and 59.
It is worth noting that theory (equation 6,10) predicts the experimental
behavior reasonably, even for 8 = 2,49 (Figure 8.15).

Figures 8.17 and 8.18 show the effect of altering‘% from 5 to 10
for 8 = 13.74 and 3.91 respectively. These results suggest that at a
particular value of B, variations in éahave only a limited effect in

retarding the flow in the ranges investigated, A glance at equation
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(6.10) shows that when f = 0.015 (the value estimated for these experi-
ments), changing~§ from 5 to 10 only slightly alters the coefficient of
( t:)2,'the one place where this parameter appears. Thus, this result
is logical from a theoretical viewpoint.

Figures 8.19 and 8,20 exhibit the effect of altering the parameter,
5n Theoretical curves indicate that for %-n 0.5 the fluid accelerates
faster at the beginning of the discharge process than in the case of
g-u 1.0, which is due to the larger initial head in the former case,

Since the larger column of liquid has a higher inertia, it requires a
greater total time for the entire discharge. Although the measurements
follow the theoretical curves closely in the latter half, they were not
sufficiently precise to pick out the initial cross-over, owing to the
very small periods of time (of the order of 0.5 sec.) involved,

Figures 8,21 through 8.29 depict the measurements for the case where
the entrance to the discharge tube is sharp-edged, instead of being
rounded as illustrated in Figure 7.5, This represents a slightly more
complex situation, and it necéssitates taking into account the loss in
head due to the stream separation at the entrance and subsequent reattach-
ment, The theoretical curves were calculated from equation (7.1), where
the entrance loss coefficient, K, is included. The trends are identical
with those described above for the case of rounded entrances (K = 0).

The discharge process in general is slower because of the loss in head
mentioned above.

For the case of pressure driven discharge of a container through a
tube, a closed form solution in terms of elementary'functiuns has been

found for equation (6.10). This solution (given in equation 6.17) agrees

very will with the numerical solution of the complete equation (see
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Figures 6.26 and 6.27). 1In this important case of pressure driven dis-
charge, it is seen that when B8-values are low, the fluid spends a major
portion of the total discharge time accelerating to the peak value at-
tained during the transient period. No experimental measurements were
obtained for %%R“” 0 due to difficulty in fabricating the necessary
apparatus and lack of the necessary sensitivity in the recording equip-
ment. These problems are discussed in Chapter 9.

All the analytically predicted variations (the solid and dashed
lines in Figures 8.9 through 8.29) were obtained assuming the discharge

coefficient C_ or the friction factor f to be constant throughout a trans-

D
ient run. These assumptions are justified by the results presented in
Chapters 5 and 6 (Figures 5.14 through 5.25 and 6.28 through 6.39). For
discharge through an orifice it was shown that the predictions with a
constant CD (evaluated at QZ%EES and with a CD varying according to the
instantaneous Reynolds number differ little from each other when

gx%EE:g 1000. (Figures 5.18 and 5.19). Similarly, for discharge through

a tube predictions assuming a constant friction factor f, chosen judicious-
ly, and those with f varying as a function of instantaneous Reynolds

number differ little over most of the ranges of gﬁ%EET(Figures 6.32, 6.33,
6.38, and 6.39).

In conclusion, it can be said that the scaling procedures developed
during this investigation can be used with confidence for predicting the
behavior of large liquid discharge systems when the flow is incompressible
and single-phase, and when effects of heat transfer can be neglected,

The data presented show good agreement between theory and experiment,

Hence, the equations developed here can be applied for predicting the mass

flow rate and its variation with time. In the following chapter, which
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concludes the report, these results are susmarized and recommendations

are made for further research.
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CHAPTER 9
SUMMARY AND RECOMMENDATIONS

To summarize the results for the case of single-phase liquid dis-
charge from containers, it can be said that both the instantaneous di-

mensionless liquid height, y* = % , and the instantaneous dimensionless
m

ﬂhf 1
o (=) 5’*23ﬁ
t/(B \/—E-) » % s %- » é‘» R aP/p , and -d—%&}i . Analyses based on one-dimen-

sional flow models yield results consistent with experiments for the two

mass flow rate, m* = , are functions of the parameters

types of discharge investigated, viz. discharge through an orifice and
discharge through a tube. Viscous and geometric effects can be accounted
for using classical values for CD, f and K. Thus, the analyses lend sup-
port to the scaling procedures developed.
For the case of discharge through an orifice (for which %»u %-% 0):
a. transient effects do not play an important role in the dis-
charge process unless B < 4;
b. if the thickness of the orifice (L) is zero, the accepted values
of CD give accurate predictions;

¢, for 0 < % < 1.0 the value of C, varies between 0.6 and 0,82;

D
d. the case of -Ia‘- > 1.0 correspods o discharge through a tube, and
the analysis based on transient discharge through a tube pre-

dicts the experimental results accurately.
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e. the discharge coefficient CD may be assumed to remain constant

throughout a transient run when Efggﬁ:: 1000.
For discharge through a tube:

a. for 8 > 20 the quasi-steady flow analysis yields results con-
sistent with experiment, indicating that the inertia of the
fluid in the tube can be neglected;

b. for 4 <8 <20 tiansi@ntconditions have a pronounced effect on
the discharge process. In this range of B-values the inertia
of the fluid in the tube should be taken into account; as B is
decreased the fluid is retarded in the sense that the mass flow
rate, non-dimensionalized according to equation (5.3), decreases
and the total dimensionless discharge time increases instead of
remaining constant as in the case of quasi-steady flow:

¢. for short tubes (%-% 1), transient effects are negligible; how-
ever the discharge is faster than that predicted by orifice flow
equations due to the fact that the head is larger (5’# 0);

d. increasing the ratio %-retards the flow;

e. increasing % and 2P/¢

accelerates the discharge process;

f. the effect of the parameter éiggg:is not #ery pronounced for
discharge through smooth tubes (for values above 105) and can
be taken into account by using the values of friction factors

given in the Moody chart; the friction factor f may be assumed

to remain constant throughout a transient run over most typical

ranges of é_%ﬂi :

g. entrance losses can be accounted for in a conventional manner by
assuming the entrance loss coefficient K = 0 for rounded entrances

and K = 0.5 for sharp-edged entrances.
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It is concluded that the average mass flow rate tends to increase

with decreasing 8, though not proportionately. The rate of increase de-

creases with decreasing 8. As is to be expected, smooth tubes with rounded

entrances are very much better for obtaining larger mass flow rates for

a given pressure head than rough tubes and tubes with sharp-edged en-

trances.

Further, rounded entrances delay the onset of cavitation.

Some of the problems which need further investigation are listed

below,

1,

The single most important problem encountered in the experimental
investigation was that of measuring the instantaneous liquid
height in the container. When the actual discharge times are
about 1 second or more, a closed circuit stop-action TV system

is satisfactory and convenient for recording and fast read out
of data. For low 8 values and/or pressurized discharge the

times are much shorter (in case of scale model testing) and use
of the present TV system would lead to large inaccuracies. Also,
high speed photography is time consuming and expensive. There-
fore, it would be desirable to develop a method of measuring

the instantaneous liquid level perhaps by means of pressure
measurements in the container using fast response transducers

and recorders. Rouse and Abul-Fetouh (Ref., 16) found that for
flow through an orifice the pressure in the container is rela-
tively unaffected (beyond %-z 1.0) by the acceleration near the
discharge entrance. This finding may be useful in locating the
transducer for pressure measurements,

It would be desirable to conduct an experimental investigation

of pressurized discharge. Here again the problems relate mostly
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to experimental technique. Plexiglass containers may prove
hazarduous from a safety viewpoint; hence visual observation
techniques may not be so readily employed. Resort to the pres-
sure measurement technique described above may be the most ap-
propriate. A quick acting gate valve should be designed so that
it can be operated by an automatic opening device instead of by
manual manipulation. This should be coupled to the equipment
recording the height of liquid, so that the time of initiation
of discharge (t ='0) can be accurately determined. Attention
should be devoted to keeping the ullage pressure (Pl) in the
container constant during rapid discharge.

The effect of having multiple outlets, some of which may not be
vertical, should be studied. Proper scaling techniques, which
depend on the geometry and spacing of the outlets should be
developed. The analysis presented in this report can be easily
extended to the case of discharge through non-vertical tubes.

In this case the gravity force in equation (6.8) should be
modified to read pgla (cosf), where 6 is the angle of inclination
of the discharge tube to the vertical.

Scaling of two-phase flows should be studied in order that
scaled test results may be truly applicable to large liquid
propellant rocket systems using cryogenic propellants and
oxydizers. Experiments with liquid nitrogen might prove very

fruitful in this endeavor.

Measurements of pressure distributions and velocity profiles should
be obtained to provide a better knowledge of the flow development

and the associated losses under transient discharge conditions.
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APPENDIX A

DIMENSIONAL ANALYSIS OF LIQUID DISCHARGE

For the discharge of a liquid from a container through a tube, the

instantaneous liquid height is given by (see equation 3.1a):

y=y (t» Dn d: L’ H, AP» g P V) (Al)

The variables are listed below, along with their dimensions in terms of

mass (M), length (L) and time (T).

SYMBOL VARIABLE DIMENSIONS
t time elapsed from initiation T
of discharge
y liﬁuid height in container at L
time t
D container diameter L
d diameter of discharge L
L : discharge tube length L
H initial height of the liquid L
in container
AP external pressure drop TR o
g effective gravitational L T2
acceleration
P density of liquid ML

v kinematic viscosity of liquid L°T
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The variables p, g, and H are chosen as repeated variables (Ref. 28).
These are combined with each of the other variables separately to form
dimensionless groups. The following table gives the exponents for the

dimensions of M, L, and T, for each of these groups

Dimensions
Dimensionless Group M L T
y 0? gb He a ~-3a +b +c ¢} -2b
t pa gb H® 2 -3a +b +c -2b +1
D pa gb u® : a ‘~3a +b +¢ +1 -2b
d pa gb H® , a -3a +b +c +1} -2b
L pa gb T a ~-3a +b +c +1 -2b
ap o2 P HC a +1 -3a +b +c -1 -2b -2
v p? gb H® a -3a +b +c *2 -2b -1

In order to obtain dimensionless groups in the left hand column, the M,
L, and T exponents in each row must simultaneously be zero. For example,

the first row gives rise to the following:

Simultaneous Equations Solutions
a=0 a=20
~3a +b +c +1 = 0 b=20
«2b =0 ' c= -1

The dimensionless parameter associated with the first row becomes %u The

dimensionless parameters associated with the other quantities can be

obtained similarly.

Thus the various w-factors can be written as n, = & o Moy B e
i H 2 Tz
D d L AP &
T EH 4T s TH "6 T "7 2 . These n-factors can be
og H,/‘ga
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combined to form others, still maintaining the same number of independent

dimensionless parameters. For instance w, and m, can be altered to form

two other - factors.

1r'--12=9- and v =9
3 T om d 4 H
4
Similarly =, and v, can be transformed to yield u; = %-and u; = é—éﬂ .

For convenience of physical interpretation numerical constants are intro-

duced, ™, is multiplied by %-where

Y. D.4
B = (;) -1 = /) '_1

since this parameter arises naturally in a quasi-steady analysis using

Bernoulli's equation (equation 5.1). The final result is written as

Y . t AP/pg dv2gH L D L
H F ( 5T ] H » v *H a‘ ] d) (AZ)
T

In an analogous manner equation (3.1b) can be reduced to yield the

dimensionless mass flow rate as

t AP/pg  d¥2gH
=G ( H P

v fli' ’ % 4 %) (A3)
v2gH B/ﬁ—g

L

nD
P 5

W {8
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APPENDIX B
QUASI-STEADY FLOW THROUGH AN ORIFICE IN THE ABSENCE OF

VISCOUS EFFECTS FOR ZERO PRESSURE DROP

Figure 5.1 illustrates the system for this analysis. Here it is
assumed that the velocity of the fluid is constant over any cross-section.
Also, the surface of the fluid is assumed to be horizontal at all times.

The discharge mass flow rate m is given oavz, and continuity requires that
pAV1 = paV2 (B1)

where Vl and V2 are the fluid velocities at locations 1 and 2 respectively.
For the conditions indicated in Table 5.1, Bernoulli's equation applies.
Thus,

1 2 1 2

i
o
+

d Ad .
For the coordinate system shown, V1 = - af and V2 = - 5-3% . Since

P1 = P2’ equation (B2) becomes

2 2
pey+ze =30 -2 (83)

Solving for g%-gives

I (2 (84)
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2
where 82 = [(%) -1], a parameter depending only on the geometry of the
system. Note that the negative sign appears because y decreases as t
increases. Integration of equation (B4) yields
t y
Jdth-‘i-jﬁl. (BS)
o V2g ‘H Yy

Finally,

which relates the instantaneous height of liquid to time after initiation
of discharge. Equation (B6) can be rewritten as

2
Yoll- (b -t (B7)
S

g

which shows that the instantaneous height is related to time parabolically.
Also, this result implies that the total discharge time is 8/ %§" These
results are represented graphically in Figure 5.2,
: d d .
The instantaneous rate of discharge is pA (- a%) where 3¥-is given

by equafion (B4). Thus,

- P.é‘l 35y (88)
But from equation (B6)
v2gy = V2gH - %; (B9)

Therefore, equation (B8) becomes
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m = 955 [/Zg - 355] : (B10)

Rearrangement of this equation provides the result in dimensionless form,

which is
m - [1 - .1.....’5...] (B11)
w02, 1 8 oh
O(T) B v2gH s

For systems having fixed geometry, B has a constant value so that

m

TTDZ 1
p (=) §-/§§ﬁ

t ] according to equation (B11). This is in
viH/g
agreement with the dimensional analysis result given in equation (3.4b).

is purely a function of |

A plot of equation (Bll) is given in Figure 5.3 which shows that the
predicted discharge rate decreases linearly with time. This decrease
with time is associated with the drop-off in the hydrostatic head y (which
corresponds to the gravitational driving potential) as liquid is removed

from the container.
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APPENDIX C
LIQUID DISCHARGE THROUGH A TUBE

QUAST-STEADY ANALYSIS

In this section an analysis based on an assumption of quasi-steady
flow is presented. Friction and entran ce effects will be taken into
aceount. In the earlier presentation of'the same problem, (Ref. 25), the
effect of the various dimensionless parameters is not readily obvious.

In the following analysis, an attempt is made to show explicitly the de-
pendence of the mass flow rate (alternately the instantaneous liquid
height) on the various dimensionless parameters. The system configuration
and coordinate axes are shown in Figure 1.2. Application of Bernoulli's

e€quation, with the usual nomenclature, yields

1
Py ¢ ogly + L) + 5 "Viz =P, %. oV, + hy (1)

where hL is a "loss of head" associated with friction and entrance effects,

and is given by

hL = Friction loss ¢+ Entrance Loss
L 1 2 1 2
= £ o 3' . -2'-0\,2 + K -rzmpvz {C2)

In equation (C2) f is the Darcy-Weisbach friection factor and K is the
entrance loss coefficient. K for a sharp entrance tube is abowt 0.5

over a wide range of conditions while f is dependent on the Reynolds
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number in the tube and can be obtained from the Moody Chart (Ref. 3).
. A A d . .
By continuity V2 = ;ﬁvl = (39 (- 3%9. Substitution of this and

equation (C2) in equation (Cl) yields
Pl+og(y+l‘)*%~p(§%§2
1 A dy2 L
Pysgolg g 1+ f-3+K (€3)

Rearranging terms and dividing through by (%-p) makes it possible to

rewrite equation (C3) as

Gr ek G @ -2y

P,-P,)
= 2 [——2_ 4 g1 (C4)
4 e . 1t s
Substitution of y* = fi and t* = g yields
/2H/g
2 A2 L 1 H dy*, 2
[8°+ ) -w3+ml-?-%—@@ - 2ghy*

= 2 [-—----n-—-p & gL] (Csa)

Division throughout by (3539 brings equation (C5a) into dimensionless
28

form. This can be written as

2. A2 L dy*.2 .2
[8° + D%+ (£ 3+ K] GFD° - 8%y
®,-p,)

1 2, ., L (C5b)
To obtain the dimensionless height as a function of dimensionless time

this equation is solved with the initial condition that at t* = O,
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y* = 1,

It can be seen from the last equation that the instantaneous
dimensionless height of the liquid (alternately the dimensionless mass
flow rate) is dependent on the six dimensionless parameters obtained by

the dimensional unalysis. For convenience equation (C5b) can be written

as
dy*. 2
o (E%?) - Cy y* = C4 (C5¢)
where
2 A2 L
c, = [8° + D E3+ K]
2
Cz = 4B (Csd4)
p.-P,)
2 1°2 L

Since y* decreases with increasing t®, equation (CSc) yields

C,y* «+ C
* 2 3.4
""X"dt* = - (mcl ) (Ce)

equation (C6) can be integrated with the above mentioned initial condition

to give

E U ool [ B (C72)
2 /ﬁ;
Finally equation (C7a) is rewritten as
C, +C, L C
2 3 2 2
® - Y 2 ~
y* =1 - ( T PR A ac; t* (C7b)
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For the case of negligible viscous and contraction effects equation

(C7b) reduces to

P17y Lt 2
yr=1-2Q . —p= sl e (C7¢)

indicating that the dimensionless height of liquid is independent of the
parameter 8.

The dimensionless mass flow rate is given by

S T
o () 3 V2ER /21

Hence from equation (C7b)

. C, +C C
A zc1 3)%'_ E%; t* (C8b)

which indicates that the mass flow rate decreases linearly with time,
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APPENDIX D
A PROGRAM FOR CALCULATING DIMENSIONLESS LIQUID HEIGHT AND
DIMENSIONLESS MASS FLOW RATE AS FUNCTIONS OF

DIMENSIONLESS TIME FOR DISCHARGE THROUGH AN ORIFICE

L5016 s MJLUKUTLA,T200,CM50000,P5.

RUN(S).
LGO.
7
PROGRAM MAINEINPUT ,QUTPUT ,PUNCH, TAPES=INPUT, TAPEG=0UTPUT, TAPET=PUN
1CH)
Cc
(T N Y P L P e e Ly Y T L Y e PR T
[
C THIS PROGRAM CALCULAYES THE THEORITICAL VALUES OF YSTAR VvS. TSTAR
C BASED ON TRANSIENY OCISCHARGE AMALYSIS, FOR A GIVEN SET OF
C EXPERIMENTAL CONDITIONS. FOR THE DISCHARGE THROUGH AN ORIFICE
C ——————————————————————————————————
[
C
C CLEAR ARRAYS
DIMENSLON YBAR (50). TEBAR 150) ,EMBAR (50)
C
Cc
1
100 READ (5,30). MONTH, DAY, YEAR, RUN
30 FORMAY ( 61X, A3, A3, A2, TX, A4)
C
IF {(ECF, 51 99, 9
C
C READ IN VALUES FOR CONTAINER DIAMETER, DISCHARGE TUBE DIAMETER (IN [NCHES)
C ANO THE DISCHARGE COEFFICIENT.,
9 READ (5.1) DOl, D2, CO
1L FORMAT (3F10.3)
C
C CALCUYLATICN OF EXPERIMENTAL COMSTANTS.
C

AlBYAZ = (0l/702)e#2
Q = (ALBYA2)%#2
RETA = SORT (Q-1.)
ALFA = BREYTA %% 2
CONS = ~(COI*(SQRT( L4, *ALFA)/{ALFA~]1.})}
WRITE (6,200}
200 FORMAT (1HLl, 37X, SIH THEOPITICAL CURVE FOR DISCHARGE THROUGH AN
1CRIFICE//)
WRITE (6,201)
201 FORMAT (34X, 56H TRANSIENT DISCHARGE ANALYSIS WITH DI SCHARGE COEF
LFLCIENT /77
WRITE (6,231} RUN, MONTHy, DAY, YEAR
31 PORMAT (65Xe 10HRUN NO. = v A4y 5%y G6HDATE s A3, A3, A2)
WRITE (6,32}
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32

202
1

203
1

204
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FORMAT (48X 6H-=———wmy 4Xj GH-~=—y 5Ky léH == ~mwm—e— /777)

WRITE 16,202) Dly ALBYA2

FORMAT (1NX, 34HTANK DIAMETER D = 5, FB.3,5H IN.,
10X, 40HAPEA RATIO = 4 F8.3)

WRITE (6,203) 02, BETA

FORMAT {10X, 34HDISCHARGE DIAMETER = 4F8.3, SH INa,
10X,40HBETA _ = 4F8.3)

WRITE (6, 204) co

FORMAT (67X, 4OHDISCHARGE COEFFICIENT = 4 F8.3///

1/

83

WRITE (6,83)
FORMAT (30X,13HDIMENS ECNLESS, 15X, 13HDIMENSIONLESS, 15Xy L3IHDIMENSI

1CNLESS)

84

1004

1005
1006

1003
1007

2000

99

WRITE (6,84)

FORMAT (34X,4HTIME, 24X 6HHEIGHT, 18X, 14HMASS FLOW RATE//)
21 = 0.5 /7 (ALPA - 1.)

Z2 = SQRT { Z1 /7 (2.%ALFA})Y

13 = 22 7 CD

CALL BETAAB (Zl, 0.5, BETAXY)

TBAR (1) = 0.0

YBAR (1) = 1.0

EMBAR (1) = 0.0

WRITE {6,1007) TBAR (1}, YBAR {1}),EMBAR (1)

N0 1003 N = 1,425

IF (N-10) 1004y 1004, 1005

YBAR (N#1) = YBAR (N) - 0.02

60 TO 1008

YBAR (Nel) = YBAR (N} - 0.NS

VY = YBAR (N+1)

EX = (VY) *% (ALFA - 1.}

CALL INCBET (21, 0.5, EX, BETXAB)

TBAR (N+1) = I3 * (BETAXY - BETXAB)

EMBAR (N+1) =—{0.5)#CONS*(SQRT{YBAR(N+1) — (YBAR(N+1)%%ALFA)))
WRITE (6,1007) TYBAR (N+1)y YBAR (N+1) 5 EMBAR (N+1l)
CONTINUE

FORMAT (30X 3F1043518X,F10.%, 18X4F10.4)

WRITE {64 2000) Z1y 22y 13, BETAXY

FORMAY (//// 3F10.6e 5Xy EV5.6)

GO 1O 100 k

SToP

END

SUBROUTINF INCBETYT ¢ Py Qs Xy BETXPQ )

THIS PROGRAM FOMPUTES INCOMPLEYE BETA FUNCTIONS USING SOPER APPROXIMATION.
(SEE TRACTS FNR COMPYTERS NO.7, PAGE 23)

A = (Xe¥PY / ((P+1.) % [P4+2,))

Bl = 2.0 /7 P

B2 = ~1.0

B3 = (4.0) * ((1e0 —~ {0.5%X)) #% (Q-1.0))
A4 = P ok {(1.0-X) %% (Q—-1.0))

B = 81 «# B2 + B3 + H4

BETXPC = A # B

RE TURN

END

SUBROUTINE ®ETAAB ( A, 8, BETA)

THIS SUBROUTINE COMPUTES COMPLFTE BETA FUNCTIONS.

FOR

GIVEN VALMES OF A AND B

REMEMBER BETA (A,B) = RETA (PyA)
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Al = GAMMR (A}

Bl = GAMMA (B)

C = A+8

Cl = GAMMA (C)

BETA = (AL * Bl) 7 C}

RETURN

END

FUNCTICN GAMMA (X) GAMOO0O1L

THIS IS SHARE PROGRAM NO. 3155.

75 FORMAT {66H GAMMA FUNCTICN OF A NEGATIVE INTEGER, OR OF ZERO, IS NOGAM0O0OO?2

1T DEFINED.) GAM00003

5 IF(X} 10,8N415 GAMO0Q004
10 K=~X GAM0O0005
EN=~-N-1 GAMC0006
v=X-EN GAMODOO7
IF(V=-1.) 204+80+20 GAM0O0008

15 N=X GAM0O0009
EN=N GAMOOOLO
v=X-EN GAMO0OO11

20 GAMMA=1,¢V*(,422784337+V%(.41184025184V%(,.08157821878+V* GAMO0O012
1(.074237907614¢V#{-.0002109074673+V*(.01097369584+Vx{~.002466T4798]1GAM00013
2+VE{,001539768105-V*{.0003442342046~V*,0C006T77105T11LT7})11)1)1))1}) GAMOOO1 4
IF(EN-2.) 37,25,30 GAMOOOLS

25 RETURN GAMOOOLl6
30 AsN-1 GAMOO0O01Y
DO 35 [=2,N GAMO0O18
Fi=] GAMOOOL9

35 GAMMA=GAMMA*(FI+V) GAM00020
RETURN GAM0OO0O021

37 N=2.-EN GAMO0022
00 40 I=1.N GAM0O0023
F1=2~] GAM00024%

40 GAMMA=GAMMA/ (F14v) GAM00025
RE TURN GAM00026

80 MWRITE (64 75} GAMOD027
RETURN GAM00028

END GAMOO0029
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APPENDIX E
A PROGRAM FOR REDUCING EXPERIMENTAL DATA AND FITTING A THEORETICAL CURVE

BY FOURTH-ORDER RUNGE-wUTTA METHOD FOR DISCHARGE THROUGH A TUBE

$1D 15016%2#10*Q#MULUKUTLA®
$EXECYTE 18408
$1BJOB
$18FTC MAIN NODBCK
CHet 4 B4R B4 E AR R HPS0 R SR ARSI SRS ER R IRGHEEEBEREER B ERERRE AV AR SRS AR AR SR EAS
L THIS PROGRAM REDUCES THF EXPERIMENTAL DATA TO A NON~DIMENSIONAL FORM AND
C CALCULATES THF THEORITICAL CURVE FOR THE GIVEN SET OF EXPERIMENTAL CONDITIONS
C FOR DISCHARGE OF A CONTAINER THROUGH A TUBE,
[ e e e e e o e 1 e e o e o o e
c000l.tt#t#ttQttttttttttttttttttllt‘t.t"l#tttt*##ttt##ttt.‘#**‘ttttttt#tt'tt*#t
c
C CLEAR ARRAYS
DIMENSION TRAW (501. Y (50%Y, TSEC (501, TSTAR (50), YSTAR {50)
"DIMENSION TTHED {3090),YTHFO (3050)s EMIHEO (3050)
100 READ (5,30) MCONTH, DAY, YEAR, RUN
30 FORMAT { 61X, A3, A3, AZ, 7X, A4}
C READ IN VALUES FDR CONTAINER DIAMETER, DISCHARGE TUBE DIAMETER, LENGTH OF
C TubBE, AND INITIAL HEIGHY OF LINUID. ALL DIMENSIONS SHOULD BE IN [NCHES.
READ (941) Dly D2y FlLy EH
1  FORMAT (4F10.3)
C READ IN FRICTION FACTOR. ENTRAMCE LOSS CDEFFICIENT, TANK PRESSURE AND THE
C ODISCHARGE PRESSURE. PRESSURES SHOULD BE IN PSIA,
READ (5,2) Cb, ENTLOS, P1l, P2
2 FORMAT (4F10.3)
C READ IN NUATA EXPERIMENTAL POINTS, WITH TRAW (1) AS CLOCK TIME {N SECS.
C AND Y (1) THE INSTANTANEQUS HETGHT IN INCHES FROM THE BOTVIOM OF THE TANK
READ (5,3) NDATA, (TRAW (T3, Y (f)y [ = 1, NDATA)
3 FORMAT ( 12 / (2F10.3))
C CALCULATICN OF EXPERIMENTAL COMSTANTS.
G = 32.2
pP = (PL1-P2)
ALBYA2 = (DL/D2)%%2
Q = (ALBYA2)#*3*2
BETA = SQRT (Q-1.)
FLBYEH = EL/EH
FLBYD = EL/D2
€ ASSUMED WATER AS THE WOHKING FLUID.
RHOG = 62.4
EHFEET = EH/1 2.
DPBYRO = (144./RHOG) * (DP/EHFEEY)
TIMCON = SQRT (G/{2.%EHFEET) )/ BETA
C REDUCE EXPERIMENT AL POINTS TO THE DIMENSIONLESS FORM,
NO 10 K = 1,NOATA
TSEC (K} = YRAW (K) -~ TRAW (1)
TSTAR (K) = TIMCON % ISEC (K)
YSTAR (K) = Y (K} / €M
10 CONTINUE



C CALCUALATICN OF EXPERIMENTAL VALUES ENDS HERE
C OLTPUT OF EXPERIMENTAL VALUES
WRITE (6,200)
200 FORMAT (1Hl, 48X, 25HREDUCFD EXPERIMENTAL DATA}
WRITE (6,201}
201 FORMAT (49X, 25H - 1717}
WRITE (6,31) RUNy MONTHs TAY, YEAR
31 FORMAT (45X, 1OHRUN NO. = » A4, SX, 6HDATE , A3, A3, A2)
WRITE (6,32}

32 PORMAT (45X gbH-m==m—y 4% 4H====y SXy lbHmw= —coc——e———//[])
WRITE (6,202) Dl, AlBYA2
202 FORMAT (10X, 34HTANK DIAMETER D = 5, FBa3,5H IN.,
1 10Xy, 40HAREA RATIO = gy F8e3)
WRITE (6,203} D2, BETA
203 FODRMAT (10X, 34HDISCHARGE MIAMETER = oFBse3y S5H INay
1 10X,40HBETA = ,F8,3)
WRITE (6,204) EL, ELBYD
204 FORMAT {10X, 34HDISCHARGE TUBE LENGTH L = 4FB8.3y SH 1IN.,
1 10X, 4OHLENGTH OF TUBE / TIAMETER = 3F8.3)
WRITE {(6,705) EHy, ELBYEH
205 FORMAT (17X, 34HINITIAL HETGHT OF LIQUID H ¢ FBe3s S5H IN.

1 4 10X, 40HLENGTH OF TUBE / INITIAL HEIGHT
WRITE (6,706) Ply, DPBYRO
206 FORMAT (10X, 34HTANK PRESSURE
1 » 9Xy 4OHCPRESSURE DIFFERENCE / RHOLG.H
WRITE (6,707) P2, CD
207 FORMAT (10X, 34HDISCHARGE PRESSURE

y FB8.3)

]

s FB.3,6H PSILA
» FB.3)

1FBa3y 6H PSIA

(]

1 » 9X, 40HFRICTION FACTOR » F8.3)
WRITE (6,208) ENTLNOS
208 FORMAT (67X, 40HENTRANCE LNSS COEFFICIENTY K = ,FB8.3//
1 /7/717)

WRITE (6,709)
209 FORMAT (3NX,4HTIME, 11X, 13 IQUID HEIGHT,TX,y 13HDIMENSIONLE $S,
1 7X513HDIMFNSTIONLESS)
WRITE (6,°10)
210 FORMAT (3NX34HSEC.y 15Xe6HIMCHES, 15Xy 4HTIME, 15X, 6HHEIGHT///)
WRITE (6,”11) {TSEC (L}y Y (L), TSTAR (L), YSTAR (L)s L=1+NDATA})
211 FORMAT (24X, F10.2s 10Xy F10.1, 10X, F1l0.3, 10X, F10.3)

c
C START CALCULATION OF THEORITICAL VALUES
C
P = (BETAY®%2
Cl = ELBYEH
€2 = = 0.5 % ((P/AlBYA2) + ({CC#* ELBYD + ENTLOS ) * AlIBYAZ 1))
C3 = (2.%P)/LALBYA2)
Ce = - (2. * P/ALIBYA2) * (ELBYEH + DPBYRO)
CALL RUNKUT (Cl, CR2. C3, C4, TTHEO, YTHED, EMTHED, J)
c

C OUTPUT OF THEMRITICAL VALUES

WRITE (6,80}

80 FORMAT (1M1//7/746X,3THSOLUTION OF THE OIFFERENTIAL EQUATION).
WRITE (6,81)

81 FORMAT (47X, 3 TH-—— o e e e et e i e 1177)
WRITE (6,29) RUN, MONTH, DAY, YEAR

39 FORMAT (48X, 10HRUN NO. = » A4, S5X, 6HDATE , A3, A3, A2]}
WRITE (6,82}

82 FORMAT (48X 6H-=--—= 24X g 4H-—=—y 5%y lbH--=-= ~-ouecw- 177}
WRITE (6,83)

83 FURMAT (30X, 13HDIMENS IONLESS 15X, 13HDIMENSIONLESS,15X, 13HDIMENSI

LCNLESSY

WRITE (6,84)

188



84
85
310
86

300
706

$IBFTC

oo o0

52
51

50

70

$IBFTC

$1BFTC

1?%)

FORMAT (36X,0HT IME 24X, 6HHEIGHT, 18Xy 14HMASS FLOW RATE//)

WRITE (6,85) (TTHEO (N)y YTHED (N), EMTHEQ (N}y N = L}, 200, 10}
FORMAT (30X oF10.2916X3F1044,18X,F10.4)

IF {J~200) 300, 300.310

WRITE (6+26) (TTHED (N)e YYHED (N} s EMTHED (N)y N = 201y J¢ 50)
FORMAT (3NX,F10.2418X,F10.4,18X,F10.4)

WRITE (6,706} Cl, C2,» C3,4 Cé

FORMAT (///4F10.3)

60 10 100

END

RUNK NNDECK

SUBROUTINF RUNKUT (C14C2¢C39CasToYEM, J)

IN THIS PROGRAM Y IS NONDIMENSTONALISED W.R.T. THE INITIAL LIQUID
HETGHT CAPITAL H
ALSC BETA IS USED TO NONDIMENSTIONALISE TIME T

DIMENSION T{3050), ¥{3050}), V{3050), EM(3050)

T{1) = 0.0

Y{1) = 1.0

Vil) = 0.0

EH = 0.00)

I =0

IF (1-3000) 51450,50

T =1+1

FX = T(I)

vY = Y(1)

U = vii) .

D1Y = FYUT (EXaVY, U, Cl, 2, C3, C4, EH)

Dlu = GYUT (EXaVY, Uy Cl, T2, C3, C4, EH)}

D2Y = FYUT ((EX40S5%CH)e (VX+0,5%D1Y )y (U40.5%03U1C19L02¢C3,04,EH)
N2U = GYUT {IEX+D5%EH)p {VY+0.5%D1Y) o (U+0.5%D1U),C1eC2sC34Ch4EH).
D3Y = FYUT ((EX4D.5%EH) s (IVY+0.5%D2Y ), (U+05%D2U),C1+C24C3,C4,FH).
D3U = GYUT ({EX+D5%FH){VY+0.5202Y ) {UA0.5%¥D2U14C14C24C3.C44EH)
DaY = FYUT ((EX+EH)(VY#D3Y),{U+D3U), C1,02,C3,C4,EH)

D4U = GYUT ((EX+EH]S(VY+D3Y ) {U+D3U), (1,C02,C3,C4,EH)

DY = (lo/be) * (DIY#(2.%02Y)+{2.%D3Y)+D4Y)
DV = {le/6e) % (DIU +(2.%0201+{2.%030})+ D4U)
Y(I+41)= YUI) +DY

VII+1l) = V(1) + DV

T{I+1) = Y{Il) % EH

AMOD = Y (1+1)

[F (AMCD - 0.01 ) 50,550,952

J =1 %1

DO 70 M = lyJ,lO

FMIM) = —{0.5&V (M)}

CONTINUE

RETURN

END

FUNC NNDECK

FUNCTICN FYUT (EA,FB,ECyEDEE,EF,EG, EK)
FYUT = EC #* EK

RE TURN

END

GUNC NODECK

FUNCTICN GYUT (A, ByCy0D,E,FoGyH)

Al = E ¥ ((Cx%2)

A2 = F *= B

GYUT ={(G ~ Al — A2 )* H}/ D
RETURN

FND



